Archive for May, 2015

[WEB SITE] Brain Connectivity Study Could Lead to Better Outcomes for Epilepsy Patients – Health News

The areas in purple are the regions of the brain where connectivity is significantly lower in patients with epilepsy, as compared to well patients.

The different images show the brain data from different angles. Image courtesy of Dario Englot

A new study found that patients with epilepsy have significantly weaker connections throughout their brain, particularly in regions important for attention and cognition, compared to individuals without epilepsy.

These weaker brain connections may reflect harmful long-term effects of recurrent seizures, but importantly the connectivity patterns may be used in the future to help locate which part of the brain is causing seizures, and may help doctors plan more effective surgeries.

In the study, 61 epilepsy patients and 31 controls subjects were analyzed using a non-invasive whole-brain imaging technique that detects magnetic fields produced by the electrical signals in the brain. The technique is called magnetoencephalography, and these MEG signals are used to examine the strength of connections in the brain.

Neurosurgery reisident Dario Englot, MD, PhD, sought to learn what the patterns of brain connectivity in epilepsy patients may tell us about the long-term effects of seizures on the brain. The findings suggest these connectivity patterns could help predict which individuals might benefit most from epilepsy surgery.

Intervening Earlier to Protect the Brain

The researchers found that patients who have had epilepsy for a longer period of time or have more frequent seizures had the most abnormal brain connectivity, suggesting that seizures may have progressive negative effects on the brain over time. This might advocate for early aggressive treatment of epilepsy that is not controlled with medication, to prevent these damaging effects of seizures that accumulate over time.

All patients in the study had seizures that were not controlled despite several anti-epileptic medications, and all ultimately underwent brain surgery to remove the part of the brain causing the seizures. After surgery, about two-thirds of patients became seizure-free. The investigators then examined whether brain connectivity patterns could predict which patients stopped having seizures after surgery.

More Precise Surgeries

Interestingly, those patients who became seizure-free were more likely to have an area of increased connectivity in the part of the brain causing seizures. This was not often seen in individuals who continued to have seizures after surgery. This suggests that although the brain is less connected overall in epilepsy patients, the part of the brain causing seizures may actually have increased connectivity.

Knowing this, MEG studies of brain connectivity could help determine which part of the brain is causing seizures, and may help predict a patient’s chance of becoming seizure-free after epilepsy surgery.

The study, published in the journal Brain, is the product off a multidisciplinary effort at the University of California, San Francisco, including biomedical engineer Srikantan Nagarajan, PhD, neurologist Heidi Kirsch, MD, neurosurgeon Edward Chang, M.D., and several other investigators.

University of California

via Health News – Brain Connectivity Study Could Lead to Better Outcomes for Epilepsy Patients.

, , , ,

1 Comment

[WEB SITE] Study explores development of epilepsy after brain injury – Health News

27/05/2015 10:15:00

Scientists at Newcastle University will carry out a pioneering study to look at the development of epilepsy following a serious brain injury.

Epilepsy can be triggered after traumatic brain damage such as a stroke, head trauma and some infections, yet no-one knows why some people go on to develop the life-threatening condition and others do not.

A team at Newcastle University has now been awarded more than £147,000 from leading charity, Epilepsy Research UK, to study epileptogenesis – a term used to describe how epilepsy arises after an injury to the brain.

Epileptogenesis involves a long and complex cascade of events, and what little is known about it mainly focuses on the latter stages, as seizures start to occur. Identifying what happens at the beginning, however, could lead to important breakthroughs and, ultimately, treatments to stop the serious condition developing.

The two-year project is being led by Dr Andrew Trevelyan, from Newcastle University’s Institute of Neuroscience, and it is one of only nine schemes nationwide in 2015 to receive a grant from the charity.

Dr Trevelyan (pictured) said: “We are delighted that Epilepsy Research UK are continuing to support our work.  Several years ago they provided me with the fellowship that helped to start my research group at Newcastle University, and which now includes eight people working full-time trying to understand what goes wrong during an epileptic seizure. That work led to key insights into how we identify from where in the brain the seizures arise.

“Now we want to understand how epilepsy might develop after an injury to the brain. This is a huge clinical problem because following such injuries, which include head trauma, strokes and some kinds of infection, there is a high risk of developing epilepsy.  But we cannot identify which people are at most risk, and even we could do so, we have no drugs to help them. What we need is the equivalent of the ‘morning after’ pill, to give people who have had a head injury or infection.”

Continue —>  Health News – Study explores development of epilepsy after brain injury.

 

,

1 Comment

[ARTICLE] Effects of mental practice on stroke patients’ upper extremity function and daily activity performance – Full Text HTML

Abstract

[Purpose] The purpose of this study was to evaluate the effects of mental practice on stroke patients’ upper extremity function and activities of daily living (ADL).

[Subjects and Methods] In this study, 29 stroke patients were randomly assigned to two groups: an experimental group (n=14) and a control group (n=15). The experimental group performed 10 minutes of mental practice once a day, 5 days a week for 2 weeks in combination with conventional rehabilitation therapy. For the control group, general rehabilitation therapy was provided during the same sessions as the experimental group. The Action Research Arm Test (ARAT) and the Fugl-Myer assessment (FMA) were used to measure upper extremity function, and the Modified Bathel Index (MBI) was used to measure daily activity performance.

[Results] After the intervention, the mental practice group showed significant improvements in upper extremity function on the affected side and ADL scores compared to the control group.

[Conclusion] The results of this study demonstrate mental practice intervention is effective at improving stroke patients’ upper extremity function and daily activity performance. In follow-up studies, securing a greater number of experimental subjects, and evaluation of the intervention’s therapeutic durability are required.

Full Text HTML —>  Effects of mental practice on stroke patients’ upper extremity function and daily activity performance.

Detect language
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Bengali
Belarusian
Bulgarian
Catalan
Chinese (Simp)
Chinese (Trad)
Croatian
Czech
Danish
Dutch
English
Esperanto
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Gujarati
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Kannada
Korean
Lao
Latin
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Bengali
Belarusian
Bulgarian
Catalan
Chinese (Simp)
Chinese (Trad)
Croatian
Czech
Danish
Dutch
English
Esperanto
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Gujarati
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Kannada
Korean
Lao
Latin
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
Text-to-speech function is limited to 100 characters

, , , , , , , ,

Leave a comment

[ARTICLE] Lesion Characteristics of Individuals With Upper Limb Spasticity After Stroke

Abstract

This study explores the relationship between lesion location and volume and upper limb spasticity after stroke. Ninety-seven stroke patients (51 with spasticity) were included in the analysis (age = 67.5 ± 13.3 years, 57 males). Lesions were traced from computed tomography and magnetic resonance images and coregistered to a symmetrical brain template. Lesion overlays from the nonspastic group were subtracted from the spastic group to determine the regions of the brain more commonly lesioned in spastic patients. Similar analysis was performed across groups of participants whose upper limb (elbow or wrist) Modified Ashworth Scale (MAS) score ranged from 1 (mild) to 4 (severe). Following subtraction analysis and Fisher’s exact test, the putamen was identified as the area most frequently lesioned in individuals with spasticity. More severe spasticity was associated with a higher lesion volume. This study establishes the neuroanatomical correlates of poststroke spasticity and describes the relationship between lesion characteristics and the severity of spasticity using mixed brain imaging modalities, including computed tomography imaging, which is more readily available to clinicians. Understanding the association between lesion location and volume with the development and severity of spasticity is an important first step toward predicting the development of spasticity after stroke. Such information could inform the implementation of intervention strategies during the recovery process to minimize the extent of impairment.

via Lesion Characteristics of Individuals With Upper Limb Spasticity After Stroke.

, , , , , , , ,

Leave a comment

[ARTICLE] Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury

ABSTRACT

Traumatic Brain Injury (TBI) is one of the largest health problems in the United States, and affects nearly two million people every year. The effects of TBI, including weakness and loss of coordination, can be debilitating and last years after the initial injury. Recovery of motor function is often incomplete. We have developed a method using electrical stimulation of the vagus nerve paired with forelimb use by which we have demonstrated enhanced recovery from ischemic and hemorrhagic stroke. Here we have tested the hypothesis that vagus nerve stimulation (VNS) paired with physical rehabilitation could enhance functional recovery after TBI. We trained rats to pull on a handle to receive a food reward. Following training, they received a controlled-cortical impact (CCI) in the forelimb area of motor cortex opposite the trained forelimb, and were then randomized into two treatment groups. One group of animals received vagus nerve stimulation (VNS) paired with rehabilitative therapy, while another group received rehabilitative therapy without VNS. Following CCI, volitional forelimb strength and task success rate in all animals were significantly reduced. VNS paired with rehabilitative therapy over a period of five weeks significantly increased recovery of both forelimb strength and hit rate on the isometric pull task compared to rehabilitative training without VNS. No significant improvement was observed in the Rehab group. Our findings indicate that VNS paired with rehabilitative therapy enhances functional motor recovery after TBI.

via Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury | Abstract.

Detect language
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Bengali
Belarusian
Bulgarian
Catalan
Chinese (Simp)
Chinese (Trad)
Croatian
Czech
Danish
Dutch
English
Esperanto
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Gujarati
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Kannada
Korean
Lao
Latin
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Bengali
Belarusian
Bulgarian
Catalan
Chinese (Simp)
Chinese (Trad)
Croatian
Czech
Danish
Dutch
English
Esperanto
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Gujarati
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Kannada
Korean
Lao
Latin
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
Text-to-speech function is limited to 100 characters

, , , , ,

Leave a comment

Effect of mirror therapy with tDCS on functional recovery of the upper extremity of stroke patients – Full Text HTML

Abstract

[Purpose] This study aimed to determine the effect of mirror therapy (MT) with transcranial direct current stimulation (tDCS) on the recovery of the upper extremity function of chronic stroke patients.

[Subjects] Twenty-seven patients at least 6 months after stroke onset were divided randomly into an experimental group (14 patients) and a control group (13 patients).

[Methods] All subjects received tDCS for 20 min followed by a 5 min rest. Then the experimental group received MT while the control group conducted the same exercises as the experimental group using a mirror that did not show the non-paretic upper extremity. The groups performed the same exercises for 20 min. All subjects received this intervention for 45-min three times a week for 6 weeks.

[Results] After the intervention, the experimental group showed significant improvements in the box and block test (BBT), grip strength, and the Fugl-Meyer assessment (FMA), and a significant decrease in the Jebsen-Taylor test. The control group showed a significant increase in grip strength after the intervention, and a significant decrease in the Jebsen-Taylor test. Comparison of the result after the intervention revealed that the experimental group showed more significant increases in the BBT and grip strength than the control group. [Conclusion] These results show that MT with tDCS has a positive effect on the functional recovery of the upper extremity of stroke patients, through activating motor regions in the brain, and thus plays an important role in recovery of neuroplasticity.

Full Text HTML —> Effect of mirror therapy with tDCS on functional recovery of the upper extremity of stroke patients.

, , , , , ,

Leave a comment

[BOOK CHAPTER] Toward an Upper-Limb Neurorehabilitation Platform Based on FES-Assisted Bilateral Movement: Decoding User’s Intentionality

Abstract

In the last years there has been a noticeable progress in motor learning, neuroplasticity and functional recovery after the occurrence of brain lesion. Rehabilitation of motor function has been associated to motor learning that occurs during repetitive, frequent and intensive training. Neuro-rehabilitation is based on the assumption that motor learning principles can be applied to motor recovery after injury, and that training can lead to permanent improvements of motor functions in patients with muscle deficits. The emergent research field of Rehabilitation Engineering may provide promise technologies for neuro-rehabilitation therapies, exploiting the motor learning and neural plasticity concepts. Among those technologies, the FES-assisted systems could provide repetitive training-based therapies and have been developed to aid or control the upper and lower limbs movements in response to user’s intentionality. Surface electromyography (SEMG) reflects directly the human motion intention, so it can be used as input information to control an active FES-assisted system. The present work describes a neurorehabilitation platform at the upper-limb level, based on bilateral coordination training (i.e. mirror movements with the unaffected arm) using a close-loop active FES system controlled by user. In this way, this work presents a novel myoelectric controller for decoding movements of user to be employed in a neurorehabilitation platform. It was carried out a set of experiments to validate the myoelectric controller in classification of seven human upper-limb movements, obtaining an average classification error of 4.3%. The results suggest that the proposed myoelectric pattern recognition method may be applied to control close-loop FES system.

more —>  Toward an Upper-Limb Neurorehabilitation Platform Based on FES-Assisted Bilateral Movement: Decoding User’s Intentionality – Springer.

Detect language
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Bengali
Belarusian
Bulgarian
Catalan
Chinese (Simp)
Chinese (Trad)
Croatian
Czech
Danish
Dutch
English
Esperanto
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Gujarati
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Kannada
Korean
Lao
Latin
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Bengali
Belarusian
Bulgarian
Catalan
Chinese (Simp)
Chinese (Trad)
Croatian
Czech
Danish
Dutch
English
Esperanto
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Gujarati
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Kannada
Korean
Lao
Latin
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish

, , , , , ,

Leave a comment

[PATENT] MOTOR TRAINING WITH BRAIN PLASTICITY

A rehabilitation device, comprising a movement element capable of controlling at least one motion parameter of a portion of a patient; a brain monitor which generates a signal indicative of brain activity; and circuitry including a memory having stored therein rehabilitation information and which inter-relates said signal and movement of said movement element as part of a rehabilitation process which utilizes said rehabilitation information.

more —>  MOTOR TRAINING WITH BRAIN PLASTICITY – Motorika Limited.

, , ,

Leave a comment

[WEB SITE] Wearable FES-robot hybrid eases stroke recovery

Cerebrovascular accidents (more commonly known as strokes) take place when poor blood flow in a certain area of the brain causes cell death. It is the third leading cause of death in the United States, with approximately 795,000 recorded cases each year, claiming the lives of more than 140.000 people each year in the U.S alone, according to the U.S. Center for Disease Control and Prevention. Common symptoms of stroke include hemiparesis (in more than 80% of stroke survivors) or a total inability to move or feel on one side of the body.After such an event, regular exercise is needed for the patient to recover motor function in the affected areas of the body.

Dubbed the “Rehab Sleeve”, the device was designed by Dr Hu Xiaoling at the Hong Kong based PolyU’s Interdisciplinary Division of Biomedical Engineering. The team was supported by the Institute of Textiles and Clothing, Industrial Centre and other organizations. It combines pressure and moisture management to allow for comfortable long-term use in patients with functional electric stimulation, a technique that uses electrical currents to activate nerve endings controlling extremities affected by paralysis. It interprets the user’s motions as electrical signals that can be used to control a computer, allowing  for a combination of training tasks with interactive applications and games.

With a modular design and equipped with a bracing system, the Rehab Sleeve is comfortable to wear and allows for a lot of flexibility in usage: the various modules can be used at once or separately to maximize training efficiency. The device’s effectiveness in training has been evaluated in over 30 patients for three to six months with preliminary results showing that compared to conventional training it can better accelerate the recovery of patients’ upper-limb functionality. Patients usually require 20 sessions of training using the Rehab Sleeve.

via Wearable FES-robot hybrid eases stroke recovery.

, , , , , , ,

Leave a comment

[VIDEO] Homonymous Hemianopsia – YouTube

I have suffered from a Homonymous Hemianopsia for most of my adult life as a result of a stroke I had when I was 21 years old due to a ruptured Brain Aneurym. The purpose of this video is to let you know that there is help out there if you need and want it

via Homonymous Hemianopsia – YouTube.

, , ,

Leave a comment

%d bloggers like this: