[ARTICLE] Electrical Stimulation of the Brain and the development of Cortical Visual Prostheses: An Historical Perspective – Full Text HTML/PDF


  • We revisit the discovery of visual cortex and of the brain’s electrical excitability.
  • We detail early experiences with electrical stimulation of visual cortex.
  • Subsequent attempts to develop a cortical visual prosthesis are explored.
  • We detail the development of technologies critical to current prosthesis designs.


Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturization of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent.


Advances in medicine, surgery and electronics have set the stage for a fusion of the physical and biological sciences; one in which prosthetic devices may restore lost functional capacity to the disabled. The emerging field of neuro-prosthetics embodies the totality of this integration, whereby sensory (Carlson et al., 2012, Guenther et al., 2012 and Weiland and Humayun, 2014), motor (Hochberg et al., 2012) and even cognitive (Hampson et al., 2012 and Hampson et al., 2013) deficits may be addressed. A significant share of the worldwide research effort in this regard is directed towards the development of visual prosthetics for the blind. Potential stimulation targets currently being investigated for visual prostheses include the retina (Chow et al., 2004, Dorn et al., 2013, Gerding et al., 2007 and Stingl et al., 2013), optic nerve (Brelen et al., 2010, Sakaguchi et al., 2009 and Wu et al., 2010), lateral geniculate body (Panetsos et al., 2011 and Pezaris and Eskandar, 2009) and the cerebral cortex (Brindley and Lewin, 1968b, Dobelle, 2000 and Schmidt et al., 1996). Human testing of implanted cortical electrode arrays for the evocation of visual percepts predates similar attempts at the retinal level by almost 30 years (Brindley and Lewin, 1968b, Humayun et al., 1996 and Humayun et al., 1999). Moreover, visual cortical prostheses offering limited functionality were chronically implanted in a number of patients throughout the 1970’s (Brindley, 1982, Dobelle et al., 1976 and Dobelle et al., 1979). Two retinal devices recently obtained regulatory approval in Europe (Argus II and Alpha IMS), with the Argus II also having obtained regulatory approval in the US (Weiland and Humayun, 2014). Cortical devices remain experimental only. Imminent human trials of a new generation of improved cortical devices render it timely to review the history of their development, including early electrical stimulation of human cerebral cortex and the first pioneering attempts to restore visual sensation to a profoundly blind person over 50 years ago.

Full Text HTML —> Electrical Stimulation of the Brain and the development of Cortical Visual Prostheses: An Historical Perspective

, , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: