[BLOG POST] A window into the brain networks: magnetoencephalography (MEG) and simultaneous Transcranial Current Stimulation (tCS). | Blog Neuroelectrics

A window into the brain networks: magnetoencephalography (MEG) and simultaneous Transcranial Current Stimulation (tCS).

Based on already published large evidence, non-invasive brain stimulation (NIBS) techniques like tdCS represent very important approach for the improvement of abnormal brain functions in various conditions (psychiatric and neurological). NIBS can induce temporary changes of neural oscillations and performance on various functional tasks. One of the key-points in understanding a mechanism of NIBS is the knowledge about the brains response to current stimulation and underlying brain network dynamics changes. Until recently, concurrent observation of the effect of NIBS on multiple brain networks interactions and most importantly, how current stimulation modifies these networks remained unknown because of difficulties in simultaneous recording and current stimulation. Recently, in Neuroelectrics wireless hybrid EEG/tCS 8-channel neurostimulator system has been developed that allows simultaneous EEG recording and current stimulation. Now, a relatively new imaging technique called magnetoencephalography (MEG) has emerged as a procedure that can bring new inside into brain dynamics. In this context, our group conducted a successfully proof of concept test to ensure the feasibility of concurrent MEG recording and current stimulation using Starstim and a set of non-ferrous electrodes (Figure 1). But first of all, what actually is MEG? Magnetoencephalography (MEG) is a noninvasive recording method of the magnetic flux from the head surface. Magnetic flux is associated with intracranial electrical currents produced by neural activity (the neural currents are caused by a flow of ions through postsynaptic dendritic membranes). From Maxwell equations, magnetic fields are found whenever there is a current flow, whether in a wire or a neuronal element. Hence, MEG detects these magnetic fields generated by spontaneous or evoked brain activity.

Continue —> A window into the brain networks: magnetoencephalography (MEG) and simultaneous Transcranial Current Stimulation (tCS). | Blog Neuroelectrics

, , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: