[Abstract & References] Hybrid robotic systems for upper limb rehabilitation after stroke: A review – Medical Engineering and Physics

Abstract

In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field.

References

  1. Mackay, J., Mensah, G.A., Mendis, S., Greenlund, K. The Atlas of Heart Disease and Stroke.World Health Organization. 2004;.
  2. Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Blaha, M.J. et al, Heart disease and stroke statistics–2014 update: a report from the American Heart Association.Circulation. 2014;129:e28–292

    .

  3. Langhorne, P., Bernhardt, J., Kwakkel, G. Stroke rehabilitation. Lancet. 2011;377:1693–1702

    .

  4. Schaechter, J.D. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol. 2004;73:61–72

    .

  5. Hara, Y. Rehabilitation with functional electrical stimulation in stroke patients. Int J Phys Med Rehabil. 2013;01:1–6.
  6. Thrasher, T.A., Zivanovic, V., McIlroy, W., Popovic, M.R. Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil Neural Repair. 2009;22:706–714

    .

  7. Popovic, M.R., Thrasher, T.A., Zivanovic, V., Takaki, J., Hajek, V. Neuroprosthesis for retraining reaching and grasping functions in severe hemiplegic patients. Neuromodulation. 2005;8:58–72

    .

  8. Maffiuletti, N.A., Minetto, M.A., Farina, D., Bottinelli, R. Electrical stimulation for neuromuscular testing and training: State-of-the art and unresolved issues. Eur J Appl Physiol. 2011;111:2391–2397

    .

  9. Popović, D.B. Advances in functional electrical stimulation (FES). J Electromyogr Kinesiol. 2014;24:795–802.
  10. Lynch, C.L., Popovic, M.R. Functional electrical stimulation. IEEE Control Syst Mag. 2008;28:40–50

    .

  11. Zhang, D., Guan, T.H., Widjaja, F., Ang, W.T. Functional electrical stimulation in rehabilitation engineering. in: Proceedings of the first international convention rehabilitation engineering and assistive technology: in conjunction with first tan tock seng hospital Neurorehabilitation Meeting (CREATe ’07). ACM Press, New York, New York, USA; 2007:221–226

    .

  12. Popovic, M.B. Control of neural prostheses for grasping and reaching. Med Eng Phys. 2003;25:41–50

    .

  13. Maffiuletti, N.A. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110:223–234

    .

  14. Huang, V.S., Krakauer, J.W. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6:5.
  15. Lum, P., Reinkensmeyer, D., Mahoney, R., Rymer, W.Z., Burgar, C. Robotic devices for movement therapy after stroke: Current status and challenges to clinical acceptance. Top Stroke Rehabil. 2002;8:40–53.
  16. Reinkensmeyer, D.J., Wolbrecht, E.T., Chan, V., Chou, C., Cramer, S.C., Bobrow, J.E.Comparison of 3D, assist-as-needed robotic arm/hand movement training provided with pneu-wrex to conventional table top therapy following chronic stroke. Am J Phys Med Rehabil Acad Physiatr. 2012;91:S232.
  17. Marchal-Crespo, L., Reinkensmeyer, D.J. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 2009;6:20

    .

  18. Borton, D., Micera, S., Millan, J.D.R., Courtine, G. Personalized neuroprosthetics. Sci Transl Med. 2013;5:210rv2

    .

  19. Del-Ama, A.J., Koutsou, A.D., Moreno, J.C., De-los-Reyes, A., Gil-Agudo, Á., Pons, J.L.Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev. 2012;49:497.
  20. Alon, G., Sunnerhagen, K.S., Geurts, A.C.H., Ohry, A. A home-based, self-administered stimulation program to improve selected hand functions of chronic stroke.NeuroRehabilitation. 2003;18:215–225.
  21. Ring, H., Rosenthal, N. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med. 2005;37:32–36

    .

  22. Fujiwara, T., Kasashima, Y., Honaga, K., Muraoka, Y., Tsuji, T., Osu, R. et al, Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy in patients with chronic stroke. Neurorehabil Neural Repair. 2009;23:125–132

    .

  23. Hu, X.L., Tong, K.Y., Li, R., Chen, M., Xue, J.J., Ho, S.K. et al, Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke. in: Proceedings of the 2010 IEEE annual international conference on engineering in medicine biology society (EMBS’10). 2010. ; 2010:5819–5822

    .

  24. Hu, X.L., Tong, K.Y., Li, R. et al, Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10. ; 2010:5819–5822.
  25. Hu, X.-L., Tong, R.K., Ho, N.S., Xue, J., Rong, W., Li, L.S. Wrist rehabilitation assisted by an electromyography-driven neuromuscular electrical stimulation robot after stroke.Neurorehabil Neural Repair. 2015;29:767–776

    .

  26. Muraoka, Y., Tanabe, S., Yamaguchi, T., Takeda, K. Specifications of an electromyogram-driven neuromuscular stimulator for upper limb functional recovery. in: Proceedings of the 2013 IEEE annual international conference on engineering in medicine biology society (EMBS’13). ; 2013:277–280

    .

  27. Hara, Y., Ogawa, S., Muraoka, Y. Hybrid power-assisted functional electrical stimulation to improve hemiparetic upper-extremity function. Am J Phys Med Rehabil. 2006;85:977–985

    .

  28. Barker, R.N., Brauer, S.G., Carson, R.G. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: A randomized clinical trial. Stroke. 2008;39:1800–1807

    .

  29. Wu, F., Lin, Y., Kuo, T., Luh, J., Lai, J. Clinical effects of combined bilateral arm training with functional electrical stimulation in patients with stroke. in: Proceedings of the 2011 IEEE International Conference on Rehabilitation Robot. ; 2011:1–7

    .

  30. Hughes, A.M., Freeman, C.T., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabil Neural Repair. 2009;.
  31. Meadmore, K.L., Hughes, A.M., Freeman, C.T., Cai, Z., Tong, D., Burridge, J.H. et al,Function electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. J Neuroeng Rehabil. 2012;1

    .

  32. Freeman, C.T., Tong, D., Meadmore, K. et al, Phase-lead iterative learning control algorithms for functional electrical stimulation-based stroke rehabilitation. Proc Inst Mech Eng Part I J Syst Control Eng. 225(6). ; 2011:850–859

    .

  33. Freeman, C.T., Hughes, A.M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E. A robotic workstation for stroke rehabilitation of the upper extremity using FES. Med Eng Phys. 2009;31:364–373

    .

  34. Freeman, C.T., Hughes, A.M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E. Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng Pract. 2009;17:368–381

    .

  35. Freeman, C.T., Hughes, A.-M., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E. A model of the upper extremity using FES for stroke rehabilitation. J Biomech Eng. 2009;131:31011.
  36. Freeman, C.T., Rogers, E., Hughes, A.M., Burridge, J.H., Meadmore, K. Iterative learning control in health care: electrical stimulation and robotic-assisted upper-limb stroke rehabilitation. IEEE Control Syst. 2012;32:18–43

    .

  37. Freeman, C.T. Upper limb electrical stimulation using input-output linearization and iterative learning control. IEEE Trans Control Syst Technol. 2015;23:1546–1554

    .

  38. Freeman, C.T. Newton-method based iterative learning control for robot-assisted rehabilitation using FES. Mechatronics. 2014;24:934–943

    .

  39. Westerveld, A.J., Schouten, A.C., Veltink, P.H., Kooij H Van, Der. Passive reach and grasp with functional electrical stimulation and robotic arm support. in: Proceedings of the thirty-sixth IEEE Annual International Conference on Engineering in Medicine Biology Society. ; 2014:3085–3089

    .

  40. Meadmore, K.L., Exell, T.A., Hallewell, E., Hughes, A.M., Freeman, C.T., Kutlu, M. et al, The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study. J Neuroeng Rehabil. 2014;11:105

    .

  41. Kutlu, M., Freeman, C.T., Hallewell, E., Hughes, A., Laila, D.S. FES-based upper-limb stroke rehabilitation with advanced sensing and control. 2015. in: Proceedings of the IEEE International Conference on Rehabilitation Robotics. IEEE, ; 2015:253–258

    .

  42. Westerveld, A.J., Aalderink, B.J., Hagedoorn, W, Buijze, M, Schouten, AC, Der, KooijHVan. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke. IEEE Trans Biomed Eng. 2014;61:2646–2654

    .

  43. Westerveld, A.J., Kuck, A., Schouten, A.C., Veltink, P.H., van der Kooij, H. Grasp and release with surface functional electrical stimulation using a model predictive control approach.Conf Proc IEEE Eng Med Biol Soc. 2012;2012:333–336

    .

  44. Krakauer, J.W. Arm function after stroke: from physiology to recovery. Semin Neurol. 2005;25:384–395.
  45. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.
  46. Malesevic, N.M., Popovic Maneski, L.Z., Ilic, V., Jorgovanovic, N., Bijelic, G., Keller, T. et al,A multi-pad electrode based functional electrical stimulation system for restoration of grasp.J Neuroeng Rehabil. 2012;9:66

    .

  47. Kwakkel, G., Kollen, B.J., Krebs, H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22:111–121

    .

  48. Prange, G.B., Jannink, M.J.A., Groothuis-Oudshoorn, C.G.M., Hermens, H.J., Ijzerman, M.J.Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–184

    .

  49. Johnson, M.J. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. J Neuroeng Rehabil. 2006;3:1.
  50. Ethier, C., Gallego, J., Miller, L. Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Curr Opin Neurobiol. 2015;33:95–102

    .

  51. Mrachacz-Kersting, N., Kristensen, S.R., Niazi, I.K., Farina, D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J Physiol. 2012;590:1669–1682

    .

  52. Xu, R., Jiang, N., Mrachacz-Kersting, N., Lin, C., Asin Prieto, G., Moreno, J.C. et al, A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans Biomed Eng. 2014;61:2092–2101

    .

  53. Mrachacz-Kersting, N., Jiang, N., Stevenson, A.J.T., Niazi, I.K., Kostic, V., Pavlovic, A. et al,Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J Neurophysiol. 2015;.
  54. Ethier, C., Miller, L.E. Brain-controlled muscle stimulation for the restoration of motor function. Neurobiol Dis. 2015;83:180–190

    .

Source: Hybrid robotic systems for upper limb rehabilitation after stroke: A review – Medical Engineering and Physics

Advertisements

, , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: