[Abstract] Increased functional connectivity one week after motor learning and tDCS in stroke patients


Recent studies using resting-state functional magnetic resonance imaging (rs-fMRI) demonstrated that changes in functional connectivity (FC) after stroke correlate with recovery. The aim of this study was to explore whether combining motor learning to dual transcranial direct current stimulation (dual-tDCS, applied over both primary motor cortices (M1)) modulated FC in stroke patients.

Twenty-two chronic hemiparetic stroke patients participated in a baseline rs-fMRI session. One week later, dual-tDCS/sham was applied during motor skill learning (intervention session); one week later, the retention session started with the acquisition of a run of rs-fMRI imaging. The intervention + retention sessions were performed once with dual-tDCS and once with sham in a randomized, cross-over, placebo-controlled, double-blind design. A whole-brain independent component analysis based analysis of variance (ANOVA) demonstrated no changes between baseline and sham sessions in the somatomotor network, whereas a FC increase was observed one week after dual-tDCS compared to baseline (qFDR <0.05, t63 = 4.15). A seed-based analysis confirmed specific stimulation-driven changes within a network of motor and premotor regions in both hemispheres.

At baseline and one week after sham, the strongest FC was observed between the M1 and dorsal premotor cortex (PMd) of the undamaged hemisphere. In contrast, one week after dual-tDCS, the strongest FC was found between the M1 and PMd of the damaged hemisphere.

Thus, a single session of dual-tDCS combined with motor skill learning increases FC in the somatomotor network of chronic stroke patients for one week.


  • ANOVA, analysis of variance;
  • damH, damaged hemisphere;
  • DAN, dorsal attentional network;
  • FC, functional connectivity;
  • ICA, Independent Component Analysis;
  • LI, Learning Index;
  • M1, primary motor cortex;
  • NIBS, non-invasive brain stimulation;
  • PI, performance index;
  • PMd, dorsal premotor cortex;
  • qFDR, q False Discovery Rate;
  • ROI, region of interest;
  • rs-fMRI, resting-state functional magnetic resonance imaging;
  • SAT, speed/accuracy trade-off;
  • SMA, supplementary motor area;
  • SMN, somatomotor network;
  • tDCS, transcranial direct stimulation;
  • TMS, transcranial magnetic stimulation;
  • undamH, undamaged hemisphere;
  • VN, visual network

Source: Increased functional connectivity one week after motor learning and tDCS in stroke patients


, , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: