[ARTICLE] The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke – Full Text HTML/PDF

Background and purpose: Reinforced feedback in virtual environment (RFVE) therapy is emerging as an innovative method in rehabilitation, which may be advantageous in the treatment of the affected arm after stroke. The purpose of this study was to investigate the impact of assisted motor training in a virtual environment for the treatment of the upper extremity (UE) after stroke compared to traditional neuromotor rehabilitation (TNR), studying also if differences exist related to the type of stroke (haemorrhagic or ischaemic).
Material and methods: Eighty patients affected by a stroke (48 ischaemic and 32 haemorrhagic) that occurred at least 1 year before were enrolled. The clinical assessment comprising the Fugl-Meyer UE (F-M UE), modified Ashworth (Bohannon and Smith) and Functional Independence Measure scale (FIM) was administered before and after the treatment.
Results: A statistically significant difference between RFVE and TNR groups (Mann-Whitney U-test) was observed in the clinical outcomes of F-M UE and FIM (both p < 0.001), but not Ashworth (p = 0.053). The outcomes of F-M UE and FIM improved in the RFVE haemorrhagic group and in the TNR haemorrhagic group with a significant difference between groups (both p < 0.001), but not for Ashworth (p = 0.651). Comparing the RFVE ischaemic group to the TNR ischaemic group, statistically significant differences emerged in F-M UE (p < 0.001), FIM (p < 0.001), and Ashworth (p = 0.036).
Conclusions: The RFVE therapy in combination with TNR showed better improvements compared to the TNR treatment only. The RFVE therapy combined with the TNR treatment was more effective than the TNR double training, in both post-ischaemic and post-haemorrhagic groups. We observed improvements in both groups of patients: post-haemorrhagic and post-ischaemic stroke after RFVE training.
Stroke is one of the main causes of death and disability
in all classes and ethnic origins worldwide. Disability and
motor deficit could be particularly evident in upper
extremities. Indeed, the loss of mobility of the upper
extremity is a major source of impairment in neuro-
muscular disorders, frequently preventing effective oc-
cupational performance and autonomy in daily life [1].
Recent studies demonstrated that the traditional con-
cept of one-to-one rehabilitation [2], where the physi-
cal therapist (or more frequently several ones) interacts
directly with a single patient, could be advantageously
implemented with the use of strategies based on speci –
fic kinematic feedback to improve the motor performance
[3-7]. Patients affected by a stroke represent a consi –
derable number among those patients suffering from
nervous system disorders who need rehabilitation. Epi-
demiological data indicate a mortality rate of 30% in the
first month after stroke independently from the type of
cerebrovascular accident, while 10% of patients were dis-
charged from the hospital without serious functional
impairment [8]. At least 60% of patients affected by stroke
present severely reduced ability to perform activities of
daily living (ADL), with persistent symptoms of focal
brain lesion [1,8,9].
Reinforced feedback in virtual environment (RFVE)
for arm motor training, as demonstrated in previous stud-
ies [3,4,6,10-16], represents a possibility in the field of
the motor learning based technique for the upper limb.
The treatment in the virtual environment with augmented
feedback promotes learning in normal subjects and in
some post-stroke patients with motor deficit involving the
upper extremity [3,16,17]. After a stroke, patients can
improve movement ability with regular, intensive and su-
pervised training [2,12,18-20].
The central nervous system (CNS) shows regene-
ra tive capacities in post-stroke patients [21,22]. It is also
noted that the plasticity of the CNS, thus its adaptabi –
lity to natural developmental changes, is maintained
throughout all the life of a subject regardless of age [23].
Magnetic resonance (MR) imaging and transcranial
magnetic stimulation tests in humans provide evidence
for functional adaptation of the motor cortex following
injury [1,21,24-27]. Neuroimaging has shown evidence
of cortical plasticity after task-oriented motor exercises
[24,26,28]. Furthermore, many studies have demonstra –
ted that neuroplasticity can occur even in the chronic phase
after stroke [1,25,29].
Our study aims to investigate whether the repetition
of tasks (intended as oriented movements of the upper
extremity performed in interaction with a virtual envi-
ronment) could improve motor function in post-ischaemic
and post-haemorrhagic stroke subjects with hemipare-
sis, in comparison to the traditional neuromotor reha-
bilitation (TNR) treatment. The first aim of the study
was to determine the effectiveness of RFVE therapy com-
bined with TNR training compared to the double TNR
in the treatment of patients after stroke. The second ob-
jective was to study the effect of the RFVE therapy,
depending on the kind of stroke (haemorrhagic, ischae –
mic), between patients undergoing the RFVE and
TNR therapy compared to the double TNR training.

Continue (HTML) —> The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke



, , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: