[commentary] Gait and balance training using virtual reality is more effective for improving gait and balance ability after stroke than conventional training without virtual reality.

Commentary

Virtual reality technology, consisting of computer simulations to artificially generate sensory information in the form of a virtual environment that is interactive and perceived as similar to the real world, is recognised as a novel intervention tool in stroke rehabilitation. This timely systematic review addressed the effectiveness of virtual reality training on gait and balance using commonly assessed clinical outcome measures. The meta-analyses conducted on these outcomes all favoured virtual reality training when the time-dose was matched between balance and gait training, with and without virtual reality. Virtual reality-based rehabilitation should thus be considered to be more than an adjunct to conventional gait training, which is recommended by a recent update on stroke rehabilitation best practice.1

While virtual reality offers the opportunity to create unique and customisable interventions that are unavailable or readily accomplished in the real world, its clinical implementation may be challenging. Diverse virtual reality tools exist; they range from computer games (eg, Wii, Kinect) to high-end, immersive, and costly systems.2 The realism and ecological validity of a virtual environment could enhance training efficiency in virtual reality-based rehabilitation. A useful framework3 to guide clinical decision-making consists of three essential phases: (1) interaction between the user and the virtual environment, taking into account the personal and environmental characteristics; (2) transfer of skills learned from the virtual environment to the real world; and (3) participation in the real world and its affordances as a result of rehabilitation. The transfer of virtual reality-based gait and balance training to actual community ambulation should thus be considered. It should be assessed with mobility outcomes recorded in the community and during negotiation of actual environmental challenges, such as slopes and obstacles. Outcomes of participation, motivation and adherence to training should also be evaluated.
Provenance: Invited. Not peer-reviewed.

References

    • 3
    • Weiss PL, et al. In: Selzer ME, et al. (eds). Textbook of neural repair and neurorehabilitation. 2016;2:182–197.

Source: Gait and balance training using virtual reality is more effective for improving gait and balance ability after stroke than conventional training without virtual reality [commentary]

Advertisements

, ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: