[ARTICLE] Task-Specific Motor Rehabilitation Therapy After Stroke Improves Performance in a Different Motor Task: Translational Evidence – Full Text

Abstract

While the stroke survivor with a motor deficit strives for recovery of all aspects of daily life movements, neurorehabilitation training is often task specific and does not generalize to movements other than the ones trained. In rodent models of post-stroke recovery, this problem is poorly investigated as the training task is often the same as the one that measures motor function. The present study investigated whether motor training by pellet reaching translates into enhancement of different motor functions in rats after stroke. Adult rats were subjected to 60-min middle cerebral artery occlusion (MCAO). Five days after stroke, animals received either training consisting of 7 days of pellet reaching with the affected forelimb (n = 18) or no training (n = 18). Sensorimotor deficits were assessed using the sticky tape test and a composite neuroscore. Infarct volumes were measured by T2-weighted MRI on day 28. Both groups of rats showed similar lesion volume and forelimb impairment after stroke. Trained animals improved in the sticky tape test after day 7 post-stroke reaching peak performance on day 14. More reaching attempts during rehabilitation were associated with a better performance in the sticky tape removal time. Task-oriented motor training generalizes to other motor functions after experimental stroke. Training intensity correlates with recovery.

Introduction

About 60% of stroke survivors suffer from motor disability 6 months after stroke [1, 2]. By training of motor skills, rehabilitation aims to maximize patients’ functional independence and quality of life. The physiological mechanisms of training interventions are incompletely understood, especially their generalization, i.e., how and how much improvement in the specific task trained generalizes to other movements. These mechanisms need to be explored in animal models to optimize and develop treatments.

In rodents, post-stroke motor rehabilitation by pellet-reaching training improves pellet-reaching success [3]. This is accompanied by reorganization in motor cortex regions controlling the affected limb [4], e.g., an increase in dendritic complexity [5, 6]. The issue of generalization of trained to other tasks has not been addressed in animal models of post-stroke recovery.

The present study investigated whether motor training by pellet reaching translates into improvement in other motor tasks in a rat stroke model. The transient middle cerebral artery occlusion (MCAO) was chosen for stroke induction, because the lesion is not confined to the motor cortex but has a variable spread towards adjacent cortical and subcortical areas, similar to human stroke.

Continue —> Task-Specific Motor Rehabilitation Therapy After Stroke Improves Performance in a Different Motor Task: Translational Evidence | SpringerLink

Fig. 1 Flow of the experiments. a Experimental schedule. b Photos illustrating rats during pellet-reaching training. c Representative MRI-T2 images from the rehabilitation and no rehabilitation group 28 days after MCAO

Advertisements

, , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: