[ARTICLE] Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review – Full Text



Virtual reality (VR) based applications play an increasing role in motor rehabilitation. They provide an interactive and individualized environment in addition to increased motivation during motor tasks as well as facilitating motor learning through multimodal sensory information. Several previous studies have shown positive effect of VR-based treatments for lower extremity motor rehabilitation in neurological conditions, but the characteristics of these VR applications have not been systematically investigated. The visual information on the user’s movement in the virtual environment, also called movement visualisation (MV), is a key element of VR-based rehabilitation interventions. The present review proposes categorization of Movement Visualisations of VR-based rehabilitation therapy for neurological conditions and also summarises current research in lower limb application.


A systematic search of literature on VR-based intervention for gait and balance rehabilitation in neurological conditions was performed in the databases namely; MEDLINE (Ovid), AMED, EMBASE, CINAHL, and PsycInfo. Studies using non-virtual environments or applications to improve cognitive function, activities of daily living, or psychotherapy were excluded. The VR interventions of the included studies were analysed on their MV.


In total 43 publications were selected based on the inclusion criteria. Seven distinct MV groups could be differentiated: indirect MV (N = 13), abstract MV (N = 11), augmented reality MV (N = 9), avatar MV (N = 5), tracking MV (N = 4), combined MV (N = 1), and no MV (N = 2). In two included articles the visualisation conditions included different MV groups within the same study. Additionally, differences in motor performance could not be analysed because of the differences in the study design. Three studies investigated different visualisations within the same MV group and hence limited information can be extracted from one study.


The review demonstrates that individuals’ movements during VR-based motor training can be displayed in different ways. Future studies are necessary to fundamentally explore the nature of this VR information and its effect on motor outcome.


Virtual reality (VR) in neurorehabilitation has emerged as a fairly recent approach that shows great promise to enhance the integration of virtual limbs in one`s body scheme [1] and motor learning in general [2]. Virtual Rehabilitation is a “group [of] all forms of clinical intervention (physical, occupational, cognitive, or psychological) that are based on, or augmented by, the use of Virtual Reality, augmented reality and computing technology. The term applies equally to interventions done locally, or at a distance (tele-rehabilitation)” [3]. The main objectives of intervention for facilitating motor learning within this definition are to (1) provide repetitive and customized high intensity training, (2) relay back information on patients’ performance via multimodal feedback, and (3) improve motivation [24]. VR therapies or interventions are based on real-time motion tracking and computer graphic technologies displaying the patients’ behaviour during a task in a virtual environment.

The interaction of the user and Virtual environment can be described as a perception and action loop [5]. This motor performance is displayed in the virtual environment and subsequently, the system provides multimodal feedback related to movement execution. Through external (e.g. vision) and internal (proprioception) senses the on-line sensory feedback is integrated into the patient’s mental representation. If necessary, the motor plan is corrected in order to achieve the given goal [5].

A previous Cochrane Review from Laver, George, Thomas, Deutsch, and Crotty [2] on Virtual Reality for stroke rehabilitation showed positive effects of VR intervention for motor rehabilitation in people post-stroke. However, grouped analysis from this review on recommendation for VR intervention provides inconclusive evidence. The author further comments that “[…] virtual reality interventions may vary greatly […], it is unclear what characteristics of the intervention are most important” ([2], p. 14).

Virtual rehabilitation system provides three different types of information to the patient: movement visualisation, performance feedback and context information [6]. During a motor task the patient’s movements are captured and represented in the virtual environment (movement visualisation). According to the task success, information about the accomplished goal or a required movement alteration is transmitted through one or several sensory modalities (performance feedback). Finally, these two VR features are embedded in a virtual world (context information) that can vary from a very realistic to an abstract, unrealistic or reduced, technical environment.

Performance feedback often relies on theories of motor learning and is probably the most studied information type within VR-based motor rehabilitation. Moreover, context information is primarily not designed with a therapeutic purpose. Movement observation, however, plays an important role for central sensory stimulation therapies, such as mirror therapy or mental training. The observation or imagination of body movements facilitates motor recovery [789] and provides new possibilities for cortical reorganization and enhancement of functional mobility. Thus, it appears that movement visualisation may also play an important role in motor rehabilitation [101112], although this aspect is yet to be systematically investigated [13].

The main goal of the present review is to identify various movement visualisation groups in VR-based motor interventions for lower extremities, by means of a systematic literature search. Secondarily, the included studies are further analysed for their effect on motor learning. This will help guide future research in rehabilitation using VR.

An interim analysis of the review published in 2013 showed six MV groups for upper and lower extremity training and additional two MV groups directed only towards lower extremity training. In this paper, we analysed only studies involving lower limb training, leading to a revision and expansion of the previously published MV groups findings [131415].

Continue —> Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review | BioMedical Engineering OnLine | Full Text


, , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: