[Conference paper] Virtual Environments for Motor Fine Skills Rehabilitation with Force Feedback – Abstract+References

Abstract

In this paper, it is proposed an application to stimulate the motor fine skills rehabilitation by using a bilateral system which allows to sense the upper limbs by ways of a device called Leap Motion. This system is implemented through a human-machine interface, which allows to visualize in a virtual environment the feedback forces sent by a hand orthosis which was printed and designed in an innovative way using NinjaFlex material, it is also commanded by four servomotors that eases the full development of the proposed tasks. The patient is involved in an assisted rehabilitation based on therapeutic exercises, which were developed in several environments and classified due to the patient’s motor degree disability. The experimental results show the efficiency of the system which is generated by the human-machine interaction, oriented to develop human fine motor skills.

References

  1. 1.
    Holden, M.K.: Virtual environments for motor rehabilitation: review. Cyberpsychol. Behav. 8(3), 187–211 (2005). Discussion 212–219CrossRefGoogle Scholar
  2. 2.
    Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation: review. CyberPsychol. Behav. 8(3), 241–262 (2005)CrossRefGoogle Scholar
  3. 3.
    Organización Mundial de la Salud and Banco Mundial: Informe mundial sobre la discapacidad (Resumen), Organ. Mund. la Salud, p. 27 (2011)
  4. 4.
    Parker, V.M., Wade, D.T., Hewer, R.L.: Loss of arm function after stroke: measurement, frequency, and recovery. Int. Rehabil. Med. 8(2), 69–73 (1986)CrossRefGoogle Scholar
  5. 5.
    Lai, S.M., Studenski, S., Duncan, P.W., Perera, S.: Persisting consequences of stroke measured by the stroke impact scale. Stroke 33(7), 1840–1844 (2002)CrossRefGoogle Scholar
  6. 6.
    Yazid, M.: Development of a potential system for upper limb rehabilitation training based on virtual reality. In: 2011 4th International Conference on Human System Interactions HSI 2011, pp. 352–356 (2011)
  7. 7.
    Petersen, R.: Mild cognitive impairment 56, 303–309 (2014)
  8. 8.
    WHO: International classification of impairment, disabilities and handicaps. World Health Organization, Geneva, May 1976 (1980)
  9. 9.
    van Swieten, J.C., Koudstaal, P.J., Visser, M.C., Schouten, H.J., van Gijn, J.: Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19(5), 604–607 (1988)CrossRefGoogle Scholar
  10. 10.
    Krampe, R.T.: Aging, expertise and fine motor movement. Neurosci. Biobehav. Rev. 26(7), 769–776 (2002)CrossRefGoogle Scholar
  11. 11.
    van Vliet, P.M., Wulf, G.: Extrinsic feedback for motor learning after stroke: what is the evidence? Disabil. Rehabil. 28(13–14), 831–840 (2006)CrossRefGoogle Scholar
  12. 12.
    Byl, N., et al.: Effectiveness of sensory and motor rehabilitation of the upper limb following the principles of neuroplasticity: patients stable poststroke. Neurorehabil. Neural Repair 17(3), 176–191 (2003)CrossRefGoogle Scholar
  13. 13.
    Kizony, R., Katz, N., Weiss, P.L.: Adapting an immersive virtual reality system for rehabilitation. J. Vis. Comput. Animat. 14(5), 261–268 (2003)CrossRefGoogle Scholar
  14. 14.
    Deutsch, J.E., Latonio, J., Burdea, G.C., Boian, R.: Post-stroke rehabilitation with the rutgers ankle system: a case study. Presence Teleoperators Virtual Environ. 10(4), 416–430 (2001)CrossRefGoogle Scholar
  15. 15.
    Sveistrup, H.: Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 1, 10 (2004)CrossRefGoogle Scholar
  16. 16.
    Jack, D., et al.: Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 308–318 (2001)CrossRefGoogle Scholar
  17. 17.
    Alejandro, M., Cardona, C., Spitia, F.R., López, A.B.: Exoesqueletos para potenciar las capacidades humanas y apoyar la rehabilitación. Rev. Ing. Biomédica 4, 63–73 (2010)Google Scholar
  18. 18.
    Kuhtz-Buschbeck, J.P., Hoppe, B., Gölge, M., Dreesmann, M., Damm-Stünitz, U., Ritz, A.: Sensorimotor recovery in children after traumatic brain injury: analyses of gait, gross motor, and fine motor skills. Dev. Med. Child Neurol. 45(12), 821–828 (2003)CrossRefGoogle Scholar
  19. 19.
    Taylor, C.L., Harris, S.R.: Effects of ankle-foot orthosis on functional motor performance in a child with spastic diplegia. Am. J. Occup. Ther. Off. Publ. Am. Occup. Ther. Assoc. 40(7), 492–494 (1986)CrossRefGoogle Scholar
  20. 20.
    Iosa, M., et al.: Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top. Stroke Rehabil. 22(4), 306–316 (2015)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Andaluz, V., Salazar, P., Silva, S., Escudero, V., Bustamante, D.: Rehabilitation of upper limb with force feedback. In: 2016 IEEE International Conference on Automatica (ICA-ACCA) (2016)
  23. 23.
    Andaluz, V.H., et al.: Virtual reality integration with force feedback in upper limb rehabilitation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10073, pp. 259–268. Springer, Cham (2016). doi:10.1007/978-3-319-50832-0_25 CrossRefGoogle Scholar
  24. 24.
    Matos, N., Santos, A., Vasconcelos, A.: ICTs for improving Patients Rehabilitation Research Techniques. Commun. Comput. Inf. Sci. 515(97753), 143–154 (2015)Google Scholar

Source: Virtual Environments for Motor Fine Skills Rehabilitation with Force Feedback | SpringerLink

Advertisements

, , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: