[ARTICLE] Changes in arm-hand function and arm-hand skill performance in patients after stroke during and after rehabilitation – Full Text




Arm-hand rehabilitation programs applied in stroke rehabilitation frequently target specific populations and thus are less applicable in heterogeneous patient populations. Besides, changes in arm-hand function (AHF) and arm-hand skill performance (AHSP) during and after a specific and well-described rehabilitation treatment are often not well evaluated.


This single-armed prospective cohort study featured three subgroups of stroke patients with either a severely, moderately or mildly impaired AHF. Rehabilitation treatment consisted of a Concise_Arm_and_hand_ Rehabilitation_Approach_in_Stroke (CARAS). Measurements at function and activity level were performed at admission, clinical discharge, 3, 6, 9 and 12 months after clinical discharge.


Eighty-nine stroke patients (M/F:63/23; mean age:57.6yr (+/-10.6); post-stroke time:29.8 days (+/-20.1)) participated. All patients improved on AHF and arm-hand capacity during and after rehabilitation, except on grip strength in the severely affected subgroup. Largest gains occurred in patients with a moderately affected AHF. As to self-perceived AHSP, on average, all subgroups improved over time. A small percentage of patients declined regarding self-perceived AHSP post-rehabilitation.


A majority of stroke patients across the whole arm-hand impairment severity spectrum significantly improved on AHF, arm-hand capacity and self-perceived AHSP. These were maintained up to one year post-rehabilitation. Results may serve as a control condition in future studies.


One of the most common deficits following stroke is a persistent impairment of the arm and hand due to a hemiparesis, which has a significant impact on performance in daily life activities [1]. Recovery of arm-hand function and skills is a major rehabilitation and health care challenge. Motor rehabilitation approaches for arm-hand performance after stroke has been changing substantially over the last decades. However, an integral arm-hand skill training approach, accommodating both the heterogeneity of the patient population and its associated patterns and levels of recovery directly post-stroke seems to be absent. A large number of well-explored and well-investigated examples of training approaches in specific (sub) populations have been identified [2] like, for instance, task-oriented training [3], mental practice [4] and constraint-induced movement therapy (CIMT) [5]. In task-oriented approaches specific functional, skill-related tasks are trained. This is done preferably by using real-life objects [6], thereby teaching patients to solve specific problems related to, e.g., anticipatory motor adjustments or cognitive processing by using efficient goal-oriented movement strategies [7, 8].

Existing task-oriented arm-hand programs (e.g. [916]) are valuable contributions to rehabilitation practice and may offer a stable point of departure for clinicians to select the most appropriate therapy for a particular patient.

However, several aspects make it difficult for clinicians to choose the most appropriate arm-hand therapy intervention(s) for a particular patient: 1) Most studies or programs target specific populations (in particular those with some preservation of wrist and/or finger extension) and thus are less applicable for patients with a more severely affected arm-hand as seen in the heterogeneous populations of many rehabilitation centres [17]. 2) Programs are focused on either the arm or the hand alone. 3) Most of the current studies in research projects feature strictly protocolled interventions, which cannot be easily adopted in the clinicians’ daily practice. 4) The lack of information about the proportional improvement or deterioration to be expected in stroke survivors in the sub-acute phase after stroke may lead to difficulties for clinicians to make decisions about arm-hand treatment objectives and concomitant prognostics regarding arm-hand skill performance.

In order to overcome these four drawbacks a Concise Arm and hand Rehabilitation Approach in Stroke (acronym: CARAS) [18] was developed in order to guide clinicians, during their daily practice, in systematically designing a patient’s optimal arm-hand rehabilitation program. CARAS is based on four constructs: a) stratification of the patient population is based on the severity of arm–hand impairment for which the Utrechtse Arm-hand Test (UAT) is used [19], b) clear focus on the individual’s rehabilitation goals and concomitant potential rehabilitation treatment outcomes, c) principles of self-efficacy, and d) possibility to systematically incorporate (new) technology and new evidence-based training elements swiftly. CARAS has proven to be feasible in a number of stroke units of rehabilitation centres throughout the Netherlands.

In the present study, the term ‘arm–hand function’ (AHF) refers to the ICF ‘body function and structures level’. The term ‘arm-hand skilled performance’ (AHSP) refers to the ICF activity level, covering both capacity and performance [20].

The present paper focusses on two aspects.

Firstly, during rehabilitation AHF and AHSP may improve to a certain level. However, once a stroke patient has left the rehabilitation program, his arm-hand capacity and performance may deteriorate [21]. Whereas stroke patients with mild to moderate initial impairments show an almost fixed amount of recovery after stroke, ranging up to 70% [22, 23], stroke patients with a more severely affected arm-hand, i.e. absence of finger extension combined with large motor impairments, strongly lag behind this recovery percentage. Four years after stroke, 67% of stroke survivors still experience non-use or disuse of the moderately or severely affected arm–hand [24].

However, it is neither well understood at what rate such deterioration (or improvement) occurs, nor in which patient categories, i.e. patients with a certain level of arm-hand severity, this is most prominent. Answers to these questions are essential for the development of more adequate, personalised and cost-effective interventions that may augment and/or maintain arm-hand skill performance (AHSP) levels in stroke patients living in their home environment.

Secondly, the risk of losing the opportunity to clearly define ‘therapy-as-usual’ (TAU) is becoming a problem in AHSP research in stroke patients. In the myriad of studies evaluating newly developed training protocols aimed at improving AHF and/or AHSP, each of these new training approaches is contrasted to some kind of TAU, the latter of which may vary widely between clinics and institutes. Even worse, often TAU is not clearly defined at all.

As the implementation of many of the tested experimental treatments progresses, the concept of ‘therapy-as-usual’ inevitably will be lost.

The aim of the present study was to evaluate the course AHF and AHSP take in a broad range of sub-acute stroke patients during and after rehabilitation involving a therapy-as-usual (i.e. CARAS) [18].

Three subgroups, i.e. a subgroup of patients with a severely affected arm-hand, a subgroup of patients with a moderately affected arm-hand and a subgroup of patients with a mildly affected arm-hand, were formed.

The research questions were:

  1. To what extent do arm-hand function and arm-hand skill performance in stroke patients change during and after their rehabilitation involving therapy-as-usual?
  2. To what extent does the rate of improvement or deterioration (over time) of arm-hand function and arm-hand skill performance differ between three subgroups of stroke patients, i.e. patients with either a severely, moderately or mildly affected functional arm-hand, during and after their rehabilitation involving CARAS?[…]

Continue —> Changes in arm-hand function and arm-hand skill performance in patients after stroke during and after rehabilitation


, , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: