[WEB SITE] Is Clinical Virtual Reality the Future of Therapy?

Image courtesy of Pixabay.

As the meteors came down from the sky, my heart thudded in my chest. There was only one way I could save the town below: Reach out into the air, make a fist, and in doing so, set off an explosion. And then another. And another. How else can one be expected to defend a village?

This was the task given to me by Alex Miller, a computer scientist creating virtual realities for the neurology department at the University of Pennsylvania. Under the guidance of Dr. Branch Coslett, Miller’s lab is making programs for stroke victims trying to regain the use of a limb, amputees trying to lose phantom limb pain, and other people with mysterious, hard-to-heal conditions of the body and brain.

Missile Command. Image courtesy of Alex Miller, University of Pennsylvania.

But in the meantime, I’m strapped into an Oculus Rift VR headset, with a Leap Motion tracking system attached to the front of it. The Leap Motion is, well, magical: it scans the area in front of it, registers where my hands are, and then projects those hands into the game. The experience is profoundly immersive: when I move my head left or right, the view in the game moves accordingly, and if I open my hand or close my wrist, the same happens in-game, in real-time. There are many possible medical applications: the game is recording all of my movements, creating what would be a hyper-detailed tracking of rehab progress over time, and if Miller so chose, my in-game left hand could be a representation of my real-life right hand—a fun trick for an able-bodied person, but if I had lost my left hand, my brain seeing an intact left hand in game could actually ease phantom limb pain.

Just a few minutes earlier, Miller was strapping sensors to my thighs and knees. I’m in yet another world, and with my virtual feet underneath me. I’m on a platform in a desert, it’s twilight, and I have a puzzle to solve: make it from my spawning point to a glowing goal across the way. There are any number of pits I need to avoid falling into, and in classic game fashion, the solution is to push crates into them. Seated in my chair, I make a slow, dragging step to move forward, and sweep my foot left or right to turn. The sensors strapped to me are set up so that if you had lost your leg below—or above—the knee, the electronic signals sent by the muscles would be detected, and you’d make those same movements in the game. So even for a body that is injured in real life, it can be intact in the game, and neurologically speaking, it doesn’t make that much of a difference.

“That’s the killer use case of virtual reality,” Miller explains. The brain is surprisingly easy to fool, and it will believe that the hands and feet in a game are your own, with potentially huge medical consequences. “It’s really about illusion,” he says: you manipulate what a patient sees in their virtual self and their virtual world, and their brains will literally incorporate these things into the body image. While still early, results indicate that using the Penn neurology games does indeed reduce the intensity of phantom limb pain.

Kicking around virtual boxes. Image courtesy of Alex Miller, University of Pennsylvania.

The idea of virtual reality has been around for decades. The French dramatist Antonin Artaud coined “la realite virtuelle” in 1938 to describe the temporary world created by theatre. The 1960s saw the Sensorama, an arcade cabinet that played 3D movies along with stereo sound, wind and smells on head-mounted displays. Movies like TronThe Lawnmower Man and The Matrix all help make VR a household term. And the 1990s saw a boom in VR arcades, with game console manufacturers making early bids, too—shoutout to Nintendo’s Virtual Boy. The first examples of medical VR started showing up then, too—like a demo of gastrointestinal surgery. But, according to many researchers Thrive Global spoke to, we’ve entered a new era of VR in just the past few years.

With the Oculus, the HTC Vive, and other VR setups becoming available, the price of setting up a VR lab has cratered: Betty Mohler, a researcher at the Max Planck Institute for Biological Cybernetics, tells Thrive Global the cost has fallen a hundredfold. And it’s getting even cheaper, as low-cost options like the Google Daydream start rolling out. “With affordable, high-quality virtual reality devices hitting the market for the first time, the future seems suddenly imminent,” Oxford psychiatrist and VR specialist Daniel Freeman tells Thrive Global. “VR could become the method of choice for psychological treatment — out with the couch, on with the headset.”

It’s a potential that the investors have seen, most famously with Facebook’s $3 billionpurchase of Oculus in 2014. More recently, with the growing hype surrounding MindMaze, a VR startup out of Switzerland with a valuation already north of $1 billion. The company’s stroke rehab treatments were introduced into European hospitals in 2013, and the company announced entry into the US market this year. Since VR is so stimulating, patients are more likely to do their rehab, and according to one company report, a full 100 percent of patients forgot they were in the hospital while doing their VR rehab.

VR is simultaneously neurological and psychological: it has applications with disorders of the body, like phantom limb pain, and conditions of the mind, like PTSD, anxiety, and paranoia. Unlike any other technology before it, VR gives the user a direct sense of embodiment, what University of Barcelona pioneer Mel Slater refers to as “presence.” It’s not just another medium in a long line of media: virtual reality directly accesses people’s sense of self—these hands are mine, my own brain thought, as I pawed at the meteors. Rather than flatly watching, you’re immersed in the virtual world.

The thing about conventional “talk” therapy is that all the therapist and the client can really do is remember and imagine: you might get tips about how to keep your family from driving you crazy the next time Thanksgiving rolls around, but your shrink can’t place you at the dinner table. That all changes with virtual reality: with the right software, a therapist can put you in the places you have come to fear the most. People with arachnophobia get anxious around spiders, those with paranoia are afraid of social situations, and people with PTSD get triggered by cues linked to their trauma.

“Difficulties interacting in the world are at the heart of mental health issues,” Freeman, the Oxford psychiatrist, explains. With VR, you can repeatedly experience those feared situations—at a just-tolerable dose—and learn to overcome them. “The beauty of VR is that individuals know that a computer environment is not real, but their minds and bodies behave as if it is real,” he adds, which allows people to more easily face fearful situations, and then experiment with how to approach them. “This learning then transfers to the real world,” he says.

His lab has done lots of research around paranoia, a condition that affects around 1 or 2 percent of the population. In a 2016 paper in the British Journal of Psychiatry, Freeman and his team dropped people with paranoia into public situations, like standing in an elevator or commuting on a subway car. The subjects wore headsets and could walk around a room, rather than using a controller. Every time the patient entered one of these levels, they’d encounter more people in that space. After doing just 30 minutes of VR, about half of the patients no longer felt severe paranoia at the end of their testing day, and when they went into real social situations, they felt less distressed.[…]

Visit site —> Is Clinical Virtual Reality the Future of Therapy? | Thrive Global


, ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: