[ARTICLE] A soft robotic exosuit improves walking in patients after stroke – Full Text

A softer recovery after stroke

Passive assistance devices such as canes and braces are often used by people after stroke, but mobility remains limited for some patients. Awad et al. studied the effects of active assistance (delivery of supportive force) during walking in nine patients in the chronic phase of stroke recovery. A soft robotic exosuit worn on the partially paralyzed lower limb reduced interlimb propulsion asymmetry, increased ankle dorsiflexion, and reduced the energy required to walk when powered on during treadmill and overground walking tests. The exosuit could be adjusted to deliver supportive force during the early or late phase of the gait cycle depending on the patient’s needs. Although long-term therapeutic studies are necessary, the immediate improvement in walking performance observed using the powered exosuit makes this a promising approach for neurorehabilitation.

Abstract

Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite—and perhaps because of—their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb’s residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer’s paretic limb to facilitate an immediate 5.33 ± 0.91° increase in the paretic ankle’s swing phase dorsiflexion and 11 ± 3% increase in the paretic limb’s generation of forward propulsion (P < 0.05). These improvements in paretic limb function contributed to a 20 ± 4% reduction in forward propulsion interlimb asymmetry and a 10 ± 3% reduction in the energy cost of walking, which is equivalent to a 32 ± 9% reduction in the metabolic burden associated with poststroke walking. Relatively low assistance (~12% of biological torques) delivered with a lightweight and nonrestrictive exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke.

INTRODUCTION

Bipedal locomotion is a defining trait of the human lineage, with a key evolutionary advantage being a low energetic cost of transport (1). However, the economy of bipedal gait may be lost because of neurological injury with disabling consequences. Hemiparetic walking (27) is characterized by a slow and highly inefficient gait that is a major contributor to disability after stroke (8, 9), which is a leading cause of disability among Americans (10). Despite rehabilitation, the vast majority of stroke survivors retain neuromotor deficits that prevent walking at speeds suitable for normal, economical, and safe community ambulation (11). Impaired motor coordination (12), muscle weakness and spasticity (13), and reduced ankle dorsiflexion (DF; drop foot) and knee flexion during walking are examples of typical deficits after stroke that limit walking speed and contribute to gait compensations such as hip circumduction and hiking (1418), increase the risk of falls, and reduce fitness reserve and endurance (3, 4, 9, 12, 1921). Even those able to achieve near-normal walking speeds present with gait deficits (22, 23) that hinder community reintegration and limit participation to well below what is observed in even the most sedentary older adults (24, 25), ultimately contributing to reduced health and quality of life (10, 26, 27).

Walking independence is an important short-term goal for survivors of a stroke; however, independence can be achieved via compensatory mechanisms. The persistence of neuromotor deficits after rehabilitation often necessitates the prescription of passive assistive devices such as canes, walkers, and orthoses to enable walking at home and in the community (2830). Unfortunately, commonly prescribed devices compensate for poststroke neuromotor impairments in a manner that prevents normal gait function. For example, ankle-foot orthoses (AFOs) inhibit normal push-off during walking (31) and reduce gait adaptability (32). The stigma associated with the use of these devices is also important to consider, especially for the growing population of young adult survivors of stroke (33, 34). The major personal and societal costs of stroke-induced walking difficulty and the limitations of the existing intervention paradigm motivate the development of rehabilitation interventions and technologies that enable the rapid attainment of more normal walking behavior.

Recent years have seen the development of powered exoskeletal devices designed to enable walking in individuals who are unable to walk (35, 36). Central to this remarkable engineering achievement is a rigid structure that can support its own weight and provide high amounts of assistance; however, these powerful machines may not always be necessary to restore more normal gait function in individuals who retain the ability to walk after neurological injury, such as the majority of those after stroke. To address this opportunity, our team developed a lightweight, soft wearable robot (exosuit) that interfaces to the paretic limb of persons after stroke via garment-like, functional textile anchors. Exosuits produce gait-restorative joint torques by transmitting mechanical power from waist-mounted body-worn (37) or off-board (38, 39) actuators to the wearer through the interaction of the textile anchors and a cable-based transmission.

Several factors, such as the compliance of the exosuit-human system (40), prevent exosuits from providing the assistance necessary to enable nonambulatory individuals to walk again (41); however, for ambulatory individuals, the lightweight and nonrestrictive nature of this technology has the potential to facilitate a more natural interaction with the wearer and minimize disruption of the natural dynamics of walking (42). Our first efforts developing exosuits led to the creation of systems that could comfortably deliver assistive forces to healthy users during walking (39, 40, 4347). Recently, we demonstrated that assistive forces delivered through the exosuit interface produce marked reductions in the energy cost of healthy walking (37, 48). Thus, although exosuits can only augment, not replace, a wearer’s existing gait functions, we posit that they have the potential to work synergistically with the residual abilities of individuals with impaired gait to improve walking function.

The primary objective of this foundational study was to evaluate the potential of using the exosuit technology to restore healthy walking behavior in individuals after stroke. Toward this end, we evaluated the effects on hemiparetic gait of actively assisting the paretic limb during treadmill walking using a tethered, unilateral (worn on only one side of the body) exosuit designed to supplement the wearer’s generation of paretic ankle plantarflexion (PF) during stance phase and DF during swing phase. We posited that this targeted assistance of the paretic ankle’s gait functions would facilitate more symmetrical propulsive force generation by the paretic and nonparetic limbs and reduce the energetic burden associated with poststroke walking, which previous work has shown can be more than 60% more costly (49). Previous work on wearable assistive robots for persons after stroke has suggested that the timing of PF force delivery during walking could be an important contributor to positive outcomes in this heterogeneous population (50). Hence, we also evaluated different onset timings of PF force delivery for each individual, hypothesizing that this timing would need to be individualized to optimize outcomes.

Designed to be unobtrusive to the wearer when not powered, the exosuit’s mass of ~0.9 kg is distributed along the length of the paretic limb similar to a pair of pants. Nonetheless, to understand the net effect of walking with an exosuit powered and assisting the paretic limb, it is necessary to evaluate whether there are effects because of simply wearing the exosuit passively (worn but unpowered). A secondary objective was thus to evaluate the effects of walking with the passive exosuit relative to walking with the exosuit not worn. Moreover, because one of the compelling aspects of soft wearable robots, such as exosuits, is their potential to provide gait assistance and, potentially, rehabilitation benefit during community-based walking activities, in addition to treadmill-based biomechanical investigation into the effects of a tethered exosuit, our final objective was to evaluate the effects of exosuit assistance delivered from a first-generation, body-worn (untethered) exosuit during overground walking. Ultimately, by investigating how individuals with poststroke hemiparesis respond to exosuit-generated active assistance of ankle PF and DF during treadmill and overground walking, this study serves to define the technology’s potential for improving mobility and enabling more effective neurorehabilitation after stroke. […]

Continue —> A soft robotic exosuit improves walking in patients after stroke | Science Translational Medicine

 

Fig. 1. Overview of a soft wearable robot (exosuit) designed to augment paretic limb function during hemiparetic walking. Exosuits (A) use garment-like functional textile anchors worn around the waist and calf (B) and Bowden cable-based mechanical power transmissions to generate assistive joint torques as a function of the paretic gait cycle (C). Integrated sensors (load cells and gyroscopes) are used to detect gait events and in a cable position–based force controller that modulates force delivery. The contractile elements of the exosuit are the Bowden cables located posterior and anterior to the ankle joint. Exosuit-generated PF and DF forces are designed to restore the paretic limb’s contribution to forward propulsion (GRF) and ground clearance (ankle DF angle during swing phase)—subtasks of walking that are impaired after stroke. Poststroke deficits in these variables are demonstrated through a comparison of paretic (black) and nonparetic (gray) limbs. Means across participants are presented (n = 7).

 

Advertisements

, , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: