[Abstract] Design factors and opportunities of rehabilitation robots in upper-limb training after stroke

Abstract:

The occurrence of strokes has been progressively increasing. Upper limb recovery after stroke is more difficult than lower limb. One of the rapidly expanding technologies in post-stroke rehabilitation is robot-aided therapy. The advantage of robots is that they are able to deliver highly repetitive therapeutic tasks with minimal supervision of a therapist. However, from the literature, the focus of robotic design in stroke rehabilitation has been technology-driven. Clinical and therapeutic requirements were not seriously considered in the design of rehabilitation robots. The purpose of this study was twofold: (1) demonstrate the missing elements of current robot-aided therapy; (2) identify design factors and opportunities of rehabilitation robots (in upper-limb training after stroke). In this study, we performed a literature review on articles relevant to rehabilitation robots in upper-limb training after stroke. We identified the design foci of current rehabilitation robots for upper limb stroke recovery. Using the therapeutic framework for stroke rehabilitation in occupational therapy, we highlighted design factors and opportunities of rehabilitation robots. The outcomes of this study benefit the robotics design community in the design of rehabilitation robots.

1. Introduction

A robot is defined as a machine programmable to perform and modify tasks in response to changes in the environment [1]. The benefits of robots are noticeable in productivity, safety, and in saving time and money. The advancement of robot technologies in the past decade caused the wide adoption of robots in our lives and in the society. For instance, in education, robots were implemented in undergraduate courses to teach core artificial intelligence concepts, e.g., algorithms for searching tree data structures [2]. In agriculture, robotic milking systems (being able to reduce labor/operational costs) were installed to replace conventional milking that gave cows the freedom to be milked throughout the day [3]. In healthcare, service robots were implemented to provide functional assistance for the elderly in home environments, e.g., bringing medication for the emergency and picking up heavy objects low on the ground [4].

Source: Design factors and opportunities of rehabilitation robots in upper-limb training after stroke – IEEE Xplore Document

Advertisements

, , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: