[Abstract+References] Neuroplastic Changes Induced by Cognitive Rehabilitation in Traumatic Brain Injury: A Review 

Background. Cognitive deficits are among the most disabling consequences of traumatic brain injury (TBI), leading to long-term outcomes and interfering with the individual’s recovery. One of the most effective ways to reduce the impact of cognitive disturbance in everyday life is cognitive rehabilitation, which is based on the principles of brain neuroplasticity and restoration. Although there are many studies in the literature focusing on the effectiveness of cognitive interventions in reducing cognitive deficits following TBI, only a few of them focus on neural modifications induced by cognitive treatment. The use of neuroimaging or neurophysiological measures to evaluate brain changes induced by cognitive rehabilitation may have relevant clinical implications, since they could add individualized elements to cognitive assessment. Nevertheless, there are no review studies in the literature investigating neuroplastic changes induced by cognitive training in TBI individuals.

Objective. Due to lack of data, the goal of this article is to review what is currently known on the cerebral modifications following rehabilitation programs in chronic TBI.

Methods. Studies investigating both the functional and structural neural modifications induced by cognitive training in TBI subjects were identified from the results of database searches. Forty-five published articles were initially selected. Of these, 34 were excluded because they did not meet the inclusion criteria.

Results. Eleven studies were found that focused solely on the functional and neurophysiological changes induced by cognitive rehabilitation.

Conclusions. Outcomes showed that cerebral activation may be significantly modified by cognitive rehabilitation, in spite of the severity of the injury.

1. Laatsch L, Little D, Thulborn K. Changes in fMRI following cognitive rehabilitation in severe traumatic brain injury: a case study. Rehabil Psychol. 2004;49:262267. Google Scholar CrossRef
2. Voelbel GT, Genova HM, Chiaravalotti ND, Hoptman MJ. Diffusion tensor imaging of traumatic brain injury review: implications for neurorehabilitation. NeuroRehabilitation. 2012;31:281293. Google Scholar Medline
3. Kou Z, Iraji A. Imaging brain plasticity after trauma. Neural Regen Res. 2014;9:693700. Google Scholar CrossRef, Medline
4. Whyte J, Polansky M, Fleming M, Coslett HB, Cavallucci C. Sustained arousal and attention after traumatic brain injury. Neuropsychologia. 1995;33:797813. Google Scholar CrossRef, Medline
5. McAvinue L, O’Keeffe F, McMackin D, Robertson IH. Impaired sustained attention and error awareness in traumatic brain injury: implications for insight. Neuropsychol Rehabil. 2005;15:569587. Google Scholar CrossRef, Medline
6. Ziino C, Ponsford J. Selective attention deficits and subjective fatigue following traumatic brain injury. Neuropsychology. 2006;20:383390. Google Scholar CrossRef, Medline
7. Vakil E. The effect of moderate to severe traumatic brain injury (TBI) on different aspects of memory: a selective review. J Clin Exp Neuropsychol. 2005;27:9771021. Google Scholar CrossRef, Medline
8. Kennedy MR, Coelho C, Turkstra L, et al. Intervention for executive functions after traumatic brain injury: a systematic review, meta-analysis and clinical recommendations. Neuropsychol Rehabil. 2008;18:257299. Google Scholar CrossRef, Medline
9. Chen AJW, D’Esposito M. Traumatic brain injury: from bench to bedside to society. Neuron. 2010;66:1114. Google Scholar CrossRef, Medline
10. Tomaszczyk JC, Green NL, Frasca D, et al. Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation. Neuropsychol Rev. 2014;24:409427. Google Scholar Medline
11. Chiaravalloti ND, Dobryakova E, Wylie GR, DeLuca J. Examining the efficacy of the modified story memory technique (mSMT) in persons with TBI using functional magnetic resonance imaging (fMRI): the TBI-MEM trial. J Head Trauma Rehabil. 2015;30:261269. Google Scholar CrossRef, Medline
12. Cicerone KD, Dahlberg C, Kalmar K, et al. Evidence-based cognitive rehabilitation: recommendations for clinical practice. Arch Phys Med Rehabil. 2000;81:15961615. Google Scholar CrossRef, Medline
13. Laatsch LK, Thulborn KR, Krisky CM, Shobat DM, Sweeney JA. Investigating the neurobiological basis of cognitive rehabilitation therapy with fMRI. Brain Inj. 2004;18:957974. Google Scholar CrossRef, Medline
14. Lemmens R, Jaspers T, Robberecht W, Thijs VN. Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke. Hum Mol Genet. 2013;22:22142220. Google Scholar CrossRef, Medline
15. Faralli A, Bigoni M, Mauro A, Rossi F, Carulli D. Noninvasive strategies to promote functional recovery after stroke. Neural Plast. 2013;2013:854597. Google Scholar CrossRef, Medline
16. Lorber B, Howe ML, Benowitz LI, Irwin N. Mst3b, an Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways. Nat Neurosci. 2009;12:14071414. Google Scholar CrossRef, Medline
17. Benowitz LI, Carmichael ST. Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis. 2010;37:259266. Google Scholar CrossRef, Medline
18. Chen H, Epstein J, Stern E. Neural plasticity after acquired brain injury: evidence from functional neuroimaging. PM R. 2010;2(12 suppl 2):S306S312. Google Scholar CrossRef, Medline
19. Sacco K, Gabbatore I, Geda E, et al. Rehabilitation of communicative abilities in patients with a history of TBI: behavioral improvements and cerebral changes in resting-state activity. Front Behav Neurosci. 2016;10:48. Google Scholar CrossRef, Medline
20. Cernich AN, Kurtz SM, Mordecai KL, Ryan PB. Cognitive rehabilitation in traumatic brain injury. Curr Treat Options Neurol. 2010;12:412423. Google Scholar CrossRef, Medline
21. Cicerone KD, Langenbahn DM, Braden C, et al. Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil. 2011;92:519530. Google Scholar CrossRef, Medline
22. Amen DG, Wu JC, Taylor D, Willeumier K. Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation. J Psychoactive Drugs. 2011;43:15. Google Scholar CrossRef, Medline
23. Harch PG, Andrews SR, Fogarty EF, et al. A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder. J Neurotrauma. 2012;29:168185. Google Scholar CrossRef, Medline
24. Irimia A, Van Horn JD. Functional neuroimaging of traumatic brain injury: advances and clinical utility. Neuropsychiatr Dis Treat. 2015;11:23552365. Google Scholar CrossRef, Medline
25. Folmer RL, Billings CJ, Diedesch-Rouse AC, Gallun FJ, Lew HL. Electrophysiological assessments of cognition and sensory processing in TBI: applications for diagnosis, prognosis and rehabilitation. Int J Psychophysiol. 2011;82:415. Google Scholar CrossRef, Medline
26. Dockree PM, Robertson IH. Electrophysiological markers of cognitive deficits in traumatic brain injury: a review. Int J Psychophysiol. 2011;82:5360. Google Scholar CrossRef, Medline
27. Johnstone J, Thatcher RW. Quantitative EEG analysis and rehabilitation issues in mild traumatic brain injury. J Insur Med. 1991;23:228232. Google Scholar Medline
28. Stathopoulou S, Lubar JF. EEG changes in traumatic brain injured patients after cognitive rehabilitation. J Neurother. 2004;8:2151. Google Scholar CrossRef
29. Carter BG, Butt W. Are somatosensory evoked potentials the best predictor of outcome after severe brain injury? A systematic review. Intensive Care Med. 2005;31:765775. Google Scholar CrossRef, Medline
30. Strangman GE, O’Neil-Pirozzi TM, Supelana C, Goldstein R, Katz DI, Glenn MB. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Front Hum Neurosci. 2010;4:182. Google Scholar CrossRef, Medline
31. Strangman GE, O’Neil-Pirozzi TM, Supelana C, Goldstein R, Katz DI, Glenn MB. Fractional anisotropy helps predicts memory rehabilitation outcome after traumatic brain injury. NeuroRehabilitation. 2012;31:295310. Google Scholar Medline
32. Strangman GE, O’Neil-Pirozzi TM, Goldstein R, et al. Prediction of memory rehabilitation outcomes in traumatic brain injury by using functional magnetic resonance imaging. Arch Phys Med Rehabil. 2008;89:974981. Google Scholar CrossRef, Medline
33. Chantsoulis M, Mirski A, Rasmus A, Kropotov JD, Pachalska M. Neuropsychological rehabilitation for traumatic brain injury patients. Ann Agric Environ Med. 2015;22:368379. Google Scholar CrossRef, Medline
34. Krawczyk DC, de la Plata CM, Schauer GF, et al. Evaluating the effectiveness of reasoning training in military and civilian chronic traumatic brain injury patients: study protocol. Trials. 2013;14:1. Google Scholar CrossRef, Medline
35. Arnemann KL, Chen AJ, Novakovic-Agopian T, Gratton C, Nomura EM, D’Esposito M. Functional brain network modularity predicts response to cognitive training after brain injury. Neurology. 2015;84:15681574. Google Scholar CrossRef, Medline
36. Becker F, Reinvang I. Event-related potentials indicate bi-hemispherical changes in speech sound processing during aphasia rehabilitation. J Rehabil Med. 2007;39:658661. Google Scholar CrossRef, Medline
37. Chen AJ, Novakovic-Agopian T, Nycum TJ, et al. Training of goal-directed attention regulation enhances control over neural processing for individuals with brain injury. Brain. 2011;134(pt 5):15411554. Google Scholar CrossRef, Medline
38. Halko MA, Datta A, Plow EB, Scaturro J, Bikson M, Merabet LB. Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage. 2011;57:885891. Google Scholar CrossRef, Medline
39. Laatsch L, Thomas J, Sychra J, Lin Q, Blend M. Impact of cognitive rehabilitation therapy on neuropsychological impairments as measured by brain perfusion SPECT: a longitudinal study. Brain Inj. 1997;11:851864. Google Scholar CrossRef, Medline
40. Castellanos NP, Paúl N, Ordóñez VE, et al. Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain. 2010;133(pt 8):23652381. Google Scholar CrossRef, Medline
41. Munivenkatappa A, Rajeswaran J, Indira Devi B, Bennet N, Upadhyay N. EEG neurofeedback therapy: can it attenuate brain changes in TBI? NeuroRehabilitation. 2014;35:481484. Google Scholar Medline
42. Sacco K, Cauda F, D’Agata F, et al. A combined robotic and cognitive training for locomotor rehabilitation: evidences of cerebral functional reorganization in two chronic traumatic brain injured patients. Front Hum Neurosci. 2011;5:146. Google Scholar CrossRef, Medline
43. Lima FP, Lima MO, Leon D, et al. fMRI of the sensorimotor cortex in patients with traumatic brain injury after intensive rehabilitation. Neurol Sci. 2011;32:633639. Google Scholar CrossRef, Medline
44. Garnett MR, Cadoux-Hudson TA, Styles P. How useful is magnetic resonance imaging in predicting severity and outcome in traumatic brain injury? Curr Opin Neurol. 2001;14:753757. Google Scholar CrossRef, Medline
45. Giaquinto S. Evoked potentials in rehabilitation. A review. Funct Neurol. 2004;19:219225. Google Scholar Medline
46. Muñoz-Cespedes JM, Rios-Lago M, Paul N, Maestu F. Functional neuroimaging studies of cognitive recovery after acquired brain damage in adults. Neuropsychol Rev. 2005;15:169183. Google Scholar CrossRef, Medline
47. Strangman G, O’Neil-Pirozzi TM, Burke D, et al. Functional neuroimaging and cognitive rehabilitation for people with traumatic brain injury. Am J Phys Med Rehabil. 2005;84:6275. Google Scholar CrossRef, Medline
48. Garcia AN, Shah MA, Dixon CE, Wagner AK, Kline AE. Biologic and plastic effects of experimental traumatic brain injury treatment paradigms and their relevance to clinical rehabilitation. PM R. 2011;3(6 suppl 1):S18S27. Google Scholar CrossRef, Medline
49. Marcano-Cedeño A, Chausa P, García A, Cáceres C, Tormos JM, Gómez EJ. Artificial metaplasticity prediction model for cognitive rehabilitation outcome in acquired brain injury patients. Artif Intell Med. 2013;58:9199. Google Scholar CrossRef, Medline
50. Palacios EM, Sala-Llonch R, Junque C, et al. Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol. 2013;70:845851. Google Scholar CrossRef, Medline
51. Hibino S, Mase M, Shirataki T, et al. Oxyhemoglobin changes during cognitive rehabilitation after traumatic brain injury using near infrared spectroscopy. Neurol Medico Chir (Tokyo). 2013;53:299303. Google Scholar CrossRef, Medline
52. Jiang Q. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury. Neural Regen Res. 2016;11:714. Google Scholar CrossRef, Medline
53. Reid LB, Boyd RN, Cunnington R, Rose SE. Interpreting intervention induced neuroplasticity with fMRI: the case for multimodal imaging strategies. Neural Plast. 2016;2016:2643491. Google Scholar CrossRef, Medline
54. Douglas DB, Iv M, Douglas PK, et al. Diffusion tensor imaging of TBI: potentials and challenges. Top Magn Reson Imaging. 2015;24:241251. Google Scholar CrossRef, Medline
55. Ham TE, Sharp DJ. How can investigation of network function inform rehabilitation after traumatic brain injury? Curr Opin Neurol. 2012;25:662669. Google Scholar CrossRef, Medline
56. Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M. Clinical applications of diffusion tensor imaging. World Neurosurg. 2014;82:96109. Google Scholar CrossRef, Medline
57. Shenton ME, Hamoda HM, Schneiderman JS, et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012;6:137192. Google Scholar CrossRef, Medline
58. Strauss S, Hulkower M, Gulko E, et al. Current clinical applications and future potential of diffusion tensor imaging in traumatic brain injury. Top Magn Reson Imaging. 2015;24:353362. Google Scholar CrossRef, Medline
59. Sherer M, Stouter J, Hart T, et al. Computed tomography findings and early cognitive outcome after traumatic brain injury. Brain Inj. 2006;20:9971005. Google Scholar CrossRef, Medline
60. Sidaros A, Engberg AW, Sidaros K, et al. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain. 2008;131(pt 2):559572. Google Scholar CrossRef, Medline
61. Caglio M, Latini-Corazzini L, D’Agata F, et al. Virtual navigation for memory rehabilitation in a traumatic brain injured patient. Neurocase. 2012;18:123131. Google Scholar CrossRef, Medline
62. Laatsch L, Krisky C. Changes in fMRI activation following rehabilitation of reading and visual processing deficits in subjects with traumatic brain injury. Brain Inj. 2006;20:13671375. Google Scholar CrossRef, Medline
63. Kim YH, Yoo WK, Ko MH, Park CH, Kim ST, Na DL. Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabil Neural Repair. 2009;23:468477. Google Scholar Link
64. Sacco K, Galetto V, Dimitri D, et al. Concomitant use of transcranial direct current stimulation and computer-assisted training for the rehabilitation of attention in traumatic brain injured patients: behavioral and neuroimaging results. Front Behav Neurosci. 2016;10:57. Google Scholar CrossRef, Medline
65. Musiek FE, Baran JA, Shinn J. Assessment and remediation of an auditory processing disorder associated with head trauma. J Am Acad Audiol. 2004;15:117132. Google Scholar CrossRef, Medline
66. Pachalska M, Łukowicz M, Kropotov JD, Herman-Sucharska I, Talar J. Evaluation of differentiated neurotherapy programs for a patient after severe TBI and long term coma using event-related potentials. Med Sci Monit. 2011;17:CS120CS128. Google Scholar CrossRef, Medline
67. Dundon NM, Dockree SP, Buckley V, et al. Impaired auditory selective attention ameliorated by cognitive training with graded exposure to noise in patients with traumatic brain injury. Neuropsychologia. 2015;75:7487. Google Scholar CrossRef, Medline
68. Nebel K, Wiese H, Stude P, de Greiff A, Diener HC, Keidel M. On the neural basis of focused and divided attention. Brain Res Cogn Brain Res. 2005;25:760776. Google Scholar CrossRef, Medline
69. Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol. 2006;23:440455. Google Scholar CrossRef, Medline
70. Barcelò F, Sanz M, Molina V, Rubia FJ. The Wisconsin Card Sorting Test and the assessment of frontal function: a validation study with event-related potentials. Neuropsychologia. 1997;35:399408. Google Scholar CrossRef, Medline
71. Barcelò F, Rubia FJ. Non-frontal P3b-like activity evoked by the Wisconsin card sorting test. Neuroreport. 1998;9:747751. Google Scholar CrossRef, Medline
72. Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci. 2004;27:279306. Google Scholar CrossRef, Medline
73. Coelho CA, Liles BZ, Duffy RJ. Impairments of discourse abilities and executive functions in traumatically brain-injured adults. Brain Inj. 1995;9:471477. Google Scholar CrossRef, Medline
74. Gabbatore I, Sacco K, Angeleri R, Zettin M, Bara BG, Bosco FM. Cognitive pragmatic treatment: a rehabilitative program for traumatic brain injury individuals. J Head Trauma Rehabil. 2015;30:E14E28. Google Scholar CrossRef, Medline
75. Duncan CC, Barry RJ, Connolly JF, et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120:18831908. Google Scholar CrossRef, Medline
76. Rasmussen IA, Xu J, Antonsen IK, et al. Simple dual tasking recruits prefrontal cortices in chronic severe traumatic brain injury patients, but not in controls. J Neurotrauma. 2008;25:10571070. Google Scholar CrossRef, Medline
77. Mahncke HW, Connor BB, Appelman J, et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci U S A. 2006;103:1252312528. Google Scholar CrossRef, Medline
78. Kim J, Whyte J, Patel S, et al. A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabil Neural Repair. 2012;26:870880. Google Scholar Link
79. Bryer EJ, Medaglia JD, Rostami S, Hillary FG. Neural recruitment after mild traumatic brain injury is task dependent: a meta-analysis. J Int Neuropsychol Soc. 2013;19:751762. Google Scholar CrossRef, Medline
80. Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res. 2003;28:17571769. Google Scholar CrossRef, Medline
81. Friston KJ, Price CJ. Dynamic representations and generative models of brain function. Brain Res Bull. 2001;54:275285. Google Scholar CrossRef, Medline
82. Christodoulou C, DeLuca J, Ricker J, et al. Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;71:161168. Google Scholar CrossRef, Medline
83. Sanchez-Carrion R, Fernandez-Espejo D, Junque C, et al. A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage. 2008;43:421429. Google Scholar CrossRef, Medline
84. Sánchez-Carrión R, Gómez PV, Junqué C, et al. Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. J Neurotrauma. 2008;25:479494. Google Scholar CrossRef, Medline
85. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 1999;22:295318. Google Scholar CrossRef, Medline
86. McAllister TW, Sparling MB, Flashman LA, Saykin AJ. Neuroimaging findings in mild traumatic brain injury. J Clin Exp Neuropsychol. 2001;23:775791. Google Scholar CrossRef, Medline
87. Scheibel RS, Newsome MR, Troyanskaya M, et al. Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. J Neurotrauma. 2009;26:14471461. Google Scholar CrossRef, Medline
88. Turner GR, Levine B. Augmented neural activity during executive control processing following diffuse axonal injury. Neurology. 2008;71:812818. Google Scholar CrossRef, Medline
89. Turner GR, McIntosh AR, Levine B. Prefrontal compensatory engagement in TBI is due to altered functional engagement of existing networks and not functional reorganization. Front Syst Neurosci. 2011;5:9. Google Scholar CrossRef, Medline
90. Zhou Y, Milham MP, Lui YW, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265:882892. Google Scholar CrossRef, Medline
91. Sharp DJ, Scott G, Leech R. Network dysfunction after traumatic brain injury. Nat Rev Neurol. 2014;10:156166. Google Scholar CrossRef, Medline
92. Pandit AS, Expert P, Lambiotte R, et al. Traumatic brain injury impairs small-world topology. Neurology. 2013;80:18261833. Google Scholar CrossRef, Medline
93. Fork M, Bartels C, Ebert AD, Grubich C, Synowitz H, Wallesch CW. Neuropsychological sequelae of diffuse traumatic brain injury. Brain Inj. 2005;19:101108. Google Scholar CrossRef, Medline
94. Wallesch CW, Curio N, Kutz S, Jost S, Bartels C, Synowitz H. Outcome after mild-to-moderate blunt head injury: effects of focal lesions and diffuse axonal injury. Brain Inj. 2001;15:401412. Google Scholar CrossRef, Medline

Source: Neuroplastic Changes Induced by Cognitive Rehabilitation in Traumatic Brain Injury: A ReviewNeurorehabilitation and Neural Repair – Valentina Galetto, Katiuscia Sacco, 2017

Advertisements

, , , , , ,

%d bloggers like this: