[Abstract+References] Finite element analysis of the wrist in stroke patients: the effects of hand grip.


The provision of the most suitable rehabilitation treatment for stroke patient remains an ongoing challenge for clinicians. Fully understanding the pathomechanics of the upper limb will allow doctors to assist patients with physiotherapy treatment that will aid in full arm recovery. A biomechanical study was therefore conducted using the finite element (FE) method. A three-dimensional (3D) model of the human wrist was reconstructed using computed tomography (CT)-scanned images. A stroke model was constructed based on pathological problems, i.e. bone density reductions, cartilage wane, and spasticity. The cartilages were reconstructed as per the articulation shapes in the joint, while the ligaments were modelled using linear links. The hand grip condition was mimicked, and the resulting biomechanical characteristics of the stroke and healthy models were compared. Due to the lower thickness of the cartilages, the stroke model reported a higher contact pressure (305 MPa), specifically at the MC1-trapezium. Contrarily, a healthy model reported a contact pressure of 228 MPa. In the context of wrist extension and displacement, the stroke model (0.68° and 5.54 mm, respectively) reported a lower magnitude than the healthy model (0.98° and 9.43 mm, respectively), which agrees with previously reported works. It was therefore concluded that clinicians should take extra care in rehabilitation treatment of wrist movement in order to prevent the occurrence of other complications.

Graphical abstract


  1. 1.
    Ada L, O’Dwyer N, O’Neill E (2006) Relation between spasticity, weakness and contracture of the elbow flexors and upper limb activity after stroke: an observational study. Disabil Rehabil 28(13-14):891–897. https://doi.org/10.1080/09638280500535165CrossRefPubMedGoogle Scholar
  2. 2.
    Aprile I., Rabuffetti M, Padua L, DI Sipio E, Simbolotti C, Ferrarin M (2014) Kinematic analysis of the upper limb motor strategies in stroke patients as a tool towards advanced neurorehabilitation strategies: a preliminary study. Biomed Res IntGoogle Scholar
  3. 3.
    Arya KN, Pandian S, Verma R, Garg RK (2011) Movement therapy induced neural reorganization and motor recovery in stroke: a review. J Bodyw Mov Ther 15(4):528–537. https://doi.org/10.1016/j.jbmt.2011.01.023CrossRefPubMedGoogle Scholar
  4. 4.
    Bajuri MN, Abdul Kadir MR, Raman MM, Kamarul T (2012) Mechanical and functional assessment of the wrist affected by rheumatoid arthritis: a finite element analysis. Med Eng Phys 34(9):1294–1302. https://doi.org/10.1016/j.medengphy.2011.12.020CrossRefPubMedGoogle Scholar
  5. 5.
    Bajuri MN, Abdul Kadir MR, Yahya MY (2011) Biomechanical analysis on the effect of bone graft of the wrist after arhroplasty. IFMBE Proc 35:773–777. https://doi.org/10.1007/978-3-642-21729-6_189CrossRefGoogle Scholar
  6. 6.
    Beebe JA, Lang CE (2009) Active range of motion predicts upper extremity function 3 months after stroke. Stroke 40(5):1772–1779. https://doi.org/10.1161/STROKEAHA.108.536763CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bettinger PC, Smutz WP, Linscheid RL, Cooney WP, An KN (2000) Material properties of the trapezial and trapeziometacarpal ligaments. J Hand Surg 25(6):1085–1095. https://doi.org/10.1053/jhsu.2000.18487CrossRefGoogle Scholar
  8. 8.
    Boissy P, Bournonnais D, Carlotti MM, Gravel D, Arsenault BA (1999) Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil 13(4):354–362. https://doi.org/10.1191/026921599676433080CrossRefPubMedGoogle Scholar
  9. 9.
    Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D (2007) Apparent Young’s modulus of human radius using inverse finite element method. J Biomech 9:2022–2028CrossRefGoogle Scholar
  10. 10.
    Brown CP, Nguyen TC, Moody HR, Crawford RW, Oloyede A (2009) Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritis articular cartilage. Proc Inst Mech Eng H J Eng Med 6:643–652CrossRefGoogle Scholar
  11. 11.
    Buma F, Kwakkel G, Ramsey N (2013) Understanding upper limb recovery after stroke. Restor Neurol Neurosci 31:707–722PubMedGoogle Scholar
  12. 12.
    Carrigan SD, Whiteside RA, Pichora DR, Small CF (2003) Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Ann Biomed Eng 31(6):718–725. https://doi.org/10.1114/1.1574027CrossRefPubMedGoogle Scholar
  13. 13.
    Chen X, Zhou L, Zhang Y, Yi D, Liu L, Rao W, Wu Y, Ma D, Liu X, Zhou X-HA, Lin H, Cheng D, Yi D (2014) Risk factors of stroke in Western and Asian countries: a systematic review and meta-analysis of prospective cohort studies. BMC Public Health 14:1–13CrossRefGoogle Scholar
  14. 14.
    Cheng H-YK, Lin C-L, Lin Y-H, Chen AC (2007) Biomechanical evaluation of the modified double-plating fixation for the distal radius fracture. Clin Biomech 22(5):510–517. https://doi.org/10.1016/j.clinbiomech.2006.12.010CrossRefGoogle Scholar
  15. 15.
    Chuang L-L, Wu C-Y, Lin K-C, Lur S-Y (2012) Quantitative mechanical properties of the relaxed biceps and triceps brachii muscles in patients with subacute stroke: a reliability study of the myoton-3 myometer. Stroke Res Treat 2012:1–7. https://doi.org/10.1155/2012/617694CrossRefGoogle Scholar
  16. 16.
    Coburn JC, Upal MA, Crisco JJ (2007) Coordinate systems for the carpal bones of the wrist. J Biomech 40(1):203–209. https://doi.org/10.1016/j.jbiomech.2005.11.015CrossRefPubMedGoogle Scholar
  17. 17.
    Dennis MS, Lo KM, McDowall M, West T (2002) Fractures after stroke. Frequency, types and associations. Stroke 33(3):728–734. https://doi.org/10.1161/hs0302.103621CrossRefPubMedGoogle Scholar
  18. 18.
    Dietz V, Berger W (1984) Interlimb coordination of posture in patients with spastic hemiparesis. Brain 107(3):965–978. https://doi.org/10.1093/brain/107.3.965CrossRefPubMedGoogle Scholar
  19. 19.
    Ezquerro F, Jimenez S, Perez A, Prado M, de Diego G, Simon A (2007) The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires: a finite element study. Med Eng Phys 29(6):652–660. https://doi.org/10.1016/j.medengphy.2006.08.005CrossRefPubMedGoogle Scholar
  20. 20.
    Finlay JB, Repo RU (1979) Energy absorbing ability of articular cartilage during impact. Med Biol Eng Comput 17(3):397–403. https://doi.org/10.1007/BF02443830CrossRefPubMedGoogle Scholar
  21. 21.
    Fischli S, Sellens RW, Beek M, Pichora DR (2009) Simulation of extension, radial and ulnar deviation of the wrist with a rigid body spring model. J Biomech 224:477–485Google Scholar
  22. 22.
    Gislason MK, Nash DH, Nicol A, Kanellopoulus A, Bransby-Zachary M, Hems T, Condon B, Stansfield B (2009) A three dimensional finite element model of maximal grip loading in the human wrist. Proc Inst Mech Eng H J Eng Med 7:849–861CrossRefGoogle Scholar
  23. 23.
    Gislason MK, Nash DH, Stansfield B (2010) Finite element model creation and stability considerations of complex biological articulation. Med Eng Phys 32(5):523–531. https://doi.org/10.1016/j.medengphy.2010.02.015CrossRefPubMedGoogle Scholar
  24. 24.
    Givissis PK, Antonarakos P, Vafiades VE, Christodoulus AG (2009) Management of posstraumatic arthritis of the wrist with radiolunate fusion enhanced with a sliding autograft: a case report and description of a novel technique. Tech Hand Upper Extrem Surg 13(2):90–93. https://doi.org/10.1097/BTH.0b013e3181960675CrossRefGoogle Scholar
  25. 25.
    Gopura RARC, Bandara DSV, Kiguchi K, Mann GKI (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst 75:203–220. https://doi.org/10.1016/j.robot.2015.10.001CrossRefGoogle Scholar
  26. 26.
    Guo S, Zhang F, Wei W, Guo J, Ge W (2013) Development of force analysis-based exoskeleton for the upper limb rehabilitation system. Proc IEEE:285–289Google Scholar
  27. 27.
    Guo X, Fan Y, Li Z-M (2009) Effects of dividing the transverse carpal ligament on the mechanical behavior of the carpal bones under axial compressive load: a finite element study. Med Eng Phys 2:188–194CrossRefGoogle Scholar
  28. 28.
    Heller A, Wade DT, Wood VA, Sunderland A, Hewer RL, Ward E (1987) Arm function after stroke: measurement and recovery over the first three months. J Neurol Neurosurg Psychiatry 50(6):714–719. https://doi.org/10.1136/jnnp.50.6.714CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    James CB, Uhl TL (2001) A review of articular cartilage pathology and the use of glucosamine sulfate. J Athl Train 36(4):413–419PubMedPubMedCentralGoogle Scholar
  30. 30.
    Jorgensen L, Engstad T, Jacobsen BK (2001) Bone mineral density in acute stroke patients. Stroke 32(1):47–51. https://doi.org/10.1161/01.STR.32.1.47CrossRefPubMedGoogle Scholar
  31. 31.
    Kamper DG, Schmit BD, Rymer WZ (2001) Effect of muscle biomechanics on the quantification of spasticity. Ann Biomed Eng 29(12):1122–1134. https://doi.org/10.1114/1.1424918CrossRefPubMedGoogle Scholar
  32. 32.
    Kerin AJ, Wisnom MR, Adams MA (1998) The compressive strength of articular cartilage. Proc Inst Mech Eng H J Eng Med 4:273–280CrossRefGoogle Scholar
  33. 33.
    Kim K, Park D-S, Ko B-Y, Lee J, Yang S-N, Kim J, Song W-K (2011) Arm motion analysis of stroke patients in activities of daily living tasks: a preliminary study. IEEE. Exp Dermatol:1287–1291Google Scholar
  34. 34.
    Krishna KR, Sridhar I, Ghista DN (2008) Analysis of the helical plate for bone fracture fixation. Injury 39(12):1421–1436. https://doi.org/10.1016/j.injury.2008.04.013CrossRefPubMedGoogle Scholar
  35. 35.
    Kumar TS, Pandyan AD, Sharma AK (2006) Biomechanical measurement of post-stroke spasticity. Age Ageing 35(4):371–375. https://doi.org/10.1093/ageing/afj084CrossRefPubMedGoogle Scholar
  36. 36.
    Lang CE, Beebe JA (2007) Relating movement control at 9 upper extremity segments to loss of hand function in people with chronic hemiparesis. Neurorehabil Neural Repair 21(3):279–291. https://doi.org/10.1177/1545968306296964CrossRefPubMedGoogle Scholar
  37. 37.
    Lazoura O, Groumas N, Antoniadou E, Papadaki PJ, Papadimitriou A, Thriskos P, Fezoulidis I, Vlychou M (2008) Bone mineral density alterations in upper and lower extremities 12 months after stroke measured by peripheral quantitative computed tomography and DXA. J Clin Densitom Assess Skeletal Health 11(4):511–517. https://doi.org/10.1016/j.jocd.2008.05.097CrossRefGoogle Scholar
  38. 38.
    Li C, Zhou Y, Wang H, Liu J, Xiang L (2014) Treatment of unstable thoracolumbar fractures through short segment pedicle screw fixation techniques using pedicle fixation at the level of the fracture: a finite element analysis. PLoS One 9(6):e99156. https://doi.org/10.1371/journal.pone.0099156CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li Z, Kim JE, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW (2007) Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. J Biomech 12:2758–2766CrossRefGoogle Scholar
  40. 40.
    Lo HS, Xie SQ (2012) Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys 34(3):261–268. https://doi.org/10.1016/j.medengphy.2011.10.004CrossRefPubMedGoogle Scholar
  41. 41.
    Lum PS, Burgar CG, Kenney DE, Van der Loos HFM (1999) Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans Biomed Eng 46(6):652–662. https://doi.org/10.1109/10.764942CrossRefPubMedGoogle Scholar
  42. 42.
    M.H. R, Abdul Kadir MR, Murali MR, Kamarul T (2014) Finite element analysis of three commonly used external fixation devices for treating type III pilon fractures. Med Eng Phys 36(10):1322–1330. https://doi.org/10.1016/j.medengphy.2014.05.015CrossRefGoogle Scholar
  43. 43.
    Macleod N.A., Nash DH, Stansfield BW, Bransby-Zachary M, Hems T (2007) Cadaveric analysis of the wrist and forearm load distribution for finite element validation. In: Sixth International Hand and Wrist Biomechanics Symposium, Tainan, Taiwan, Republic of ChinaGoogle Scholar
  44. 44.
    Magermans DJ, Chadwick EKJ, Veeger HEJ, van der Helm FCT (2005) Requirement for upper extremity motions during activities of daily living. Clin Biomech 20(6):591–599. https://doi.org/10.1016/j.clinbiomech.2005.02.006CrossRefGoogle Scholar
  45. 45.
    Materialise (2008) Mimics help manual, vol Version 12.1. MaterialiseGoogle Scholar
  46. 46.
    McGrouther DA. Interactive Hand-Anatomy CD. 1.0 edn. Prima PicturesGoogle Scholar
  47. 47.
    Mirbagheri MM, Settle K, Harvey R, Rymer WZ (2007) Neuromuscular abnormalities associated with spasticity of upper extremity muscles in hemiparetic stroke. J Neurophysiol 98(2):629–637. https://doi.org/10.1152/jn.00049.2007CrossRefPubMedGoogle Scholar
  48. 48.
    Mirbagheri MM, Tsao C, Rymer WZ (2009) Natural history of neuromuscular properties after stroke: a longitudinal study. J Neurol Neurosurg Psychiatry 80(11):1212–1217. https://doi.org/10.1136/jnnp.2008.155739CrossRefPubMedGoogle Scholar
  49. 49.
    Mirbagheri MM, Tsao C, Settle K, Lilaonitkul T, Rymer WZ (2008) Time course of changes in neuromuscular properties following stroke. Conf Proc IEEE Eng Med Biol Soc 1:5097–5100Google Scholar
  50. 50.
    Nascimento LR, Polese JC, Faria CDCM, Teixeira-Salmela LF (2012) Isometric hand grip strength correlated with isokinetic data of the shoulder stabilizers in individuals with chronic stroke. J Bodyw Mov Ther 16(3):275–280. https://doi.org/10.1016/j.jbmt.2012.01.002CrossRefPubMedGoogle Scholar
  51. 51.
    Netter FH (2003) Atlas of human anatomy, 3rd edn. ICON Learning System, New York CityGoogle Scholar
  52. 52.
    Olney SJ, Richards C (1996) Hemiparetic gait following stroke. Part I. Charact Gait Posture 4:136–148CrossRefGoogle Scholar
  53. 53.
    Opheim A, Danielsson A, Murphy MA, Persson HC, Sunnerhagen KS (2014) Upper-limb spasticity during the first year after stroke. Am J Phys Med Rehabil 93(10):884–896. https://doi.org/10.1097/PHM.0000000000000157CrossRefPubMedGoogle Scholar
  54. 54.
    Patterson RM, Viegas SF, Elder K, Buford WL (1995) Quantification of anatomic, geometric, and load transfer characteristics of the wrist joint. Semin Arthroplast 6:13–19Google Scholar
  55. 55.
    Poli P, Morone G, Rosati G, Masiero S (2013) Robotic technologies and rehabilitation: new tools for stroke patient’s therapy. Biomed Res Int 2013:1–8. https://doi.org/10.1155/2013/153872CrossRefGoogle Scholar
  56. 56.
    Powers RK, Marder-Meyer J, Rymer WZ (1988) Quantitative relations between hypertonia and strecth reflex threshold in spastic hemiparesis. Ann Neurol 23(2):115–124. https://doi.org/10.1002/ana.410230203CrossRefPubMedGoogle Scholar
  57. 57.
    Ramlee MH, Abdul Kadir MR, Harun H (2014) Three-dimensional modelling and finite element analysis of an ankle external fixator. Adv Mater Res 845:183–188CrossRefGoogle Scholar
  58. 58.
    Ramlee MH, Abdul Kadir MR, Murali MR, Kamarul T (2014) Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation—a finite element analysis. Med Eng Phys 36(10):1358–1366. https://doi.org/10.1016/j.medengphy.2014.07.001CrossRefPubMedGoogle Scholar
  59. 59.
    Ramlee MH, Beng GK (2017) Function and biomechanics of upper limb in post-stroke patients—a systematic review. J Mech Med Biol 0(06):1750099. https://doi.org/10.1142/s0219519417500993CrossRefGoogle Scholar
  60. 60.
    Sato Y (2000) Abnormal bone and calcium metabolism in patients after stroke. Arch Phys Med Rehabil 81(1):117–121. https://doi.org/10.1016/S0003-9993(00)90231-4CrossRefPubMedGoogle Scholar
  61. 61.
    Sato Y, Fujimatsu Y, Kikuyama M, Kaji M, Oizumi K (1998) Influence of immobilization on bone mass and bone metabolism in hemiplegic elderly patients with a ling-standing stroke. J Neurol Sci 156(2):205–210. https://doi.org/10.1016/S0022-510X(98)00041-0CrossRefPubMedGoogle Scholar
  62. 62.
    Savelberg HH, Kooloos JG, Huiskes R, Kauer JM (1992) Stiffness of the ligaments of the human wrist joints. J Biomech 25(4):369–376. https://doi.org/10.1016/0021-9290(92)90256-ZCrossRefPubMedGoogle Scholar
  63. 63.
    Schuind F, Cooney WP, Linscheid RL, An KN, Chao EY (1995) Force and pressure transmission through the normal wrist. A theoretical two-dimensional study in the posteroanterior plane. J Biomech 28(5):587–601. https://doi.org/10.1016/0021-9290(94)00093-JCrossRefPubMedGoogle Scholar
  64. 64.
    Starsky AJ, Sangani SG, McGuire JR, Logan B, Schmit BD (2005) Reliability of biomechanical spasticity measurements at the elbow of people poststroke. Arch Phys Med Rehabil 86(8):1648–1654. https://doi.org/10.1016/j.apmr.2005.03.015CrossRefPubMedGoogle Scholar
  65. 65.
    Sunderland A, Tinson D, Bradley L, Langton H (1989) Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J Neurol Neurosurg Psychiatry 52(11):1267–1272. https://doi.org/10.1136/jnnp.52.11.1267CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tao K, Wang D, Wang C, Wang X, Liu A, Nester CJ, Howard D (2009) An in vivo experimental validation of a computational model of human foot. J Bionic Eng 6(4):387–397. https://doi.org/10.1016/S1672-6529(08)60138-9CrossRefGoogle Scholar
  67. 67.
    Tunc H, Oken O, Kara M, Tiftik T, Dogu B, Unlu Z, Ozcakar L (2012) Ultrasonographic measurement of the femoral cartilage thickness in hemiparetic patients after stroke. Int J Rehabil Res 35(3):203–207. https://doi.org/10.1097/MRR.0b013e3283532736PubMedGoogle Scholar
  68. 68.
    Warlow C, van Gijn J, Dennis M, Wardlaw J, Bamford J, Hankey G, Sandercock P, Rinkel G, Langhorne P, Sudlow C, Rothwell P (2008) Stroke: practical management. Blackwell Publishing, Oxford. https://doi.org/10.1002/9780470696361CrossRefGoogle Scholar
  69. 69.
    Wasay W, Khatri IA, Kaul S (2014) Stroke in South Asian countries. Nat Rev Neurol 10(3):135–143. https://doi.org/10.1038/nrneurol.2014.13CrossRefPubMedGoogle Scholar
  70. 70.
    Wei W, Guo S, Zhang F, Guo J, Ji Y, Wang Y (2013) A novel upper limb rehabilitation system with hand exoskeleton mechanism. Proc IEEE:285–290Google Scholar
  71. 71.
    Welmer AK, Widen HL, Sommerfeld DK (2010) Location and severity of spasticity in the first 1-2 weeks and at 3 and 18 months after stroke. Eur J Neurol 17(5):720–725. https://doi.org/10.1111/j.1468-1331.2009.02915.xCrossRefPubMedGoogle Scholar
  72. 72.
    Wong DW-C, Niu W, Zhang M (2016) Finite element analysis of foot and ankle impact injury: risk evaluation of calcaneus and talus fracture. PLoS One 11(4):e0154435. https://doi.org/10.1371/journal.pone.0154435CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yalcin S, Kara M, Ozturk GT, Ozcakar L (2016) Ultrasonographic measurements of the metacarpal and talar cartilage thicknesses in hemiplegic patients after stroke. Top Stroke Rehabil 9:1–4Google Scholar

via Finite element analysis of the wrist in stroke patients: the effects of hand grip | SpringerLink

, , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: