[Abstract+References] Non-invasive Cerebellar Stimulation: a Promising Approach for Stroke Recovery?

Abstract

Non-invasive brain stimulation (NIBS) combined with behavioral training is a promising strategy to augment recovery after stroke. Current research efforts have been mainly focusing on primary motor cortex (M1) stimulation. However, the translation from proof-of-principle to clinical applications is not yet satisfactory. Possible reasons are the heterogeneous properties of stroke, generalization of the stimulation protocols, and hence the lack of patient stratification. One strategy to overcome these limitations could be the evaluation of alternative stimulation targets, like the cerebellum. In this regard, first studies provided evidence that non-invasive cerebellar stimulation can modulate cerebellar processing and linked behavior in healthy subjects. The cerebellum provides unique plasticity mechanisms and has vast connections to interact with neocortical areas. Moreover, the cerebellum could serve as a non-lesioned entry to the motor or cognitive system in supratentorial stroke. In the current article, we review mechanisms of plasticity in the cortico-cerebellar system after stroke, methods for non-invasive cerebellar stimulation, and possible target symptoms in stroke, like fine motor deficits, gait disturbance, or cognitive impairments, and discuss strategies for multi-focal stimulation.

 References

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. https://doi.org/10.1161/CIR.0000000000000350.PubMedCrossRefGoogle Scholar
  2. 2.
    Blackburn DJ, Bafadhel L, Randall M, Harkness KA. Cognitive screening in the acute stroke setting. Age Ageing. 2013;42(1):113–6. https://doi.org/10.1093/ageing/afs116.PubMedCrossRefGoogle Scholar
  3. 3.
    Kotila M, Waltimo O, Niemi ML, Laaksonen R, Lempinen M. The profile of recovery from stroke and factors influencing outcome. Stroke. 1984;15(6):1039–44. https://doi.org/10.1161/01.STR.15.6.1039.PubMedCrossRefGoogle Scholar
  4. 4.
    Ramsey LE, Siegel JS, Lang CE, Strube M, Shulman GL, Corbetta M. Behavioural clusters and predictors of performance during recovery from stroke. Nat Hum Behav. 2017;1(3):38. https://doi.org/10.1038/s41562-016-0038.CrossRefGoogle Scholar
  5. 5.
    Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Rosamond WD. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke. 2002;33(11):2718–21. https://doi.org/10.1161/01.STR.0000035286.87503.31.PubMedCrossRefGoogle Scholar
  6. 6.
    Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(8):2527–35. https://doi.org/10.1093/brain/aws146.PubMedCrossRefGoogle Scholar
  7. 7.
    Hummel FC, Cohen LG. Drivers of brain plasticity. Curr Opin Neurol. 2005;18(6):667–74. https://doi.org/10.1097/01.wco.0000189876.37475.42.PubMedCrossRefGoogle Scholar
  8. 8.
    Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(3):490–9. https://doi.org/10.1093/brain/awh369.PubMedCrossRefGoogle Scholar
  9. 9.
    Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56–92. https://doi.org/10.1016/j.clinph.2016.10.087.PubMedCrossRefGoogle Scholar
  10. 10.
    Wessel MJ, Zimerman M, Hummel FC. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front Hum Neurosci. 2015;9:265. https://doi.org/10.3389/fnhum.2015.00265.
  11. 11.
    Tedesco Triccas L, Burridge JH, Hughes AM, Pickering RM, Desikan M, Rothwell JC, et al. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis. Clin Neurophysiol. 2016;127(1):946–55. https://doi.org/10.1016/j.clinph.2015.04.067.PubMedCrossRefGoogle Scholar
  12. 12.
    Rossi C, Sallustio F, Di Legge S, Stanzione P, Koch G. Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur J Neurol. 2013;20(1):202–4. https://doi.org/10.1111/j.1468-1331.2012.03703.x.PubMedCrossRefGoogle Scholar
  13. 13.
    Kapoor A, Lanctôt KL, Bayley M, Kiss A, Herrmann N, Murray BJ, et al. “Good outcome” isn’t good enough: cognitive impairment, depressive symptoms, and social restrictions in physically recovered stroke patients. Stroke. 2017;48(6):1688–90. https://doi.org/10.1161/STROKEAHA.117.016728.PubMedCrossRefGoogle Scholar
  14. 14.
    das Nair R, Cogger H, Worthington E, Lincoln NB. Cognitive rehabilitation for memory deficits after stroke: an updated review. Stroke. 2017;48(2):e28–9. https://doi.org/10.1161/STROKEAHA.116.015377.PubMedCrossRefGoogle Scholar
  15. 15.
    Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimulat. 2008;1(4):326–36. https://doi.org/10.1016/j.brs.2008.07.002.CrossRefGoogle Scholar
  16. 16.
    Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;3:CD009645. https://doi.org/10.1002/14651858.CD009645.pub3.
  17. 17.
    Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, et al. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol. 2009;66(3):298–309. https://doi.org/10.1002/ana.21725.PubMedCrossRefGoogle Scholar
  18. 18.
    Carey JR, Deng H, Gillick BT, Cassidy JM, Anderson DC, Zhang L, et al. Serial treatments of primed low-frequency rTMS in stroke: characteristics of responders vs. nonresponders. Restor Neurol Neurosci. 2014;32(2):323–35. https://doi.org/10.3233/RNN-130358.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. NeuroImage. 2007;35(3):1113–24. https://doi.org/10.1016/j.neuroimage.2007.01.027.PubMedCrossRefGoogle Scholar
  20. 20.
    Lindenberg R, Zhu LL, Ruber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp. 2012;33(5):1040–51. https://doi.org/10.1002/hbm.21266.PubMedCrossRefGoogle Scholar
  21. 21.
    Demirtas-Tatlidede A, Alonso-Alonso M, Shetty RP, Ronen I, Pascual-Leone A, Fregni F. Long-term effects of contralesional rTMS in severe stroke: safety, cortical excitability, and relationship with transcallosal motor fibers. NeuroRehabilitation. 2015;36(1):51–9. https://doi.org/10.3233/NRE-141191.PubMedGoogle Scholar
  22. 22.
    O’Shea J, Boudrias MH, Stagg CJ, Bachtiar V, Kischka U, Blicher JU, et al. Predicting behavioural response to TDCS in chronic motor stroke. NeuroImage. 2014;85(Pt 3):924–33. https://doi.org/10.1016/j.neuroimage.2013.05.096.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bradnam LV, Stinear CM, Barber PA, Byblow WD. Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex. 2012;22(11):2662–71. https://doi.org/10.1093/cercor/bhr344.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang CC, Wang CP, Tsai PY, Hsieh CY, Chan RC, Yeh SC. Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery. Restor Neurol Neurosci. 2014;32(6):825–35. https://doi.org/10.3233/RNN-140410.PubMedGoogle Scholar
  25. 25.
    Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–5. https://doi.org/10.1097/01.wnr.0000177010.44602.5e.PubMedCrossRefGoogle Scholar
  26. 26.
    Kwon TG, Kim YH, Chang WH, Bang OY, Shin YI. Effective method of combining rTMS and motor training in stroke patients. Restor Neurol Neurosci. 2014;32(2):223–32. https://doi.org/10.3233/RNN-130313.PubMedGoogle Scholar
  27. 27.
    Cho JY, Lee A, Kim MS, Park E, Chang WH, Shin YI, et al. Dual-mode noninvasive brain stimulation over the bilateral primary motor cortices in stroke patients. Restor Neurol Neurosci. 2017;35(1):105–14. https://doi.org/10.3233/RNN-160669.PubMedGoogle Scholar
  28. 28.
    Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123–9.PubMedGoogle Scholar
  29. 29.
    Carey MR. Synaptic mechanisms of sensorimotor learning in the cerebellum. Curr Opin Neurobiol. 2011;21(4):609–15. https://doi.org/10.1016/j.conb.2011.06.011.PubMedCrossRefGoogle Scholar
  30. 30.
    Cheron G, Dan B, Marquez-Ruiz J. Translational approach to behavioral learning: lessons from cerebellar plasticity. Neural Plast. 2013;2013:853654. https://doi.org/10.1155/2013/853654.
  31. 31.
    Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54. https://doi.org/10.1016/j.tics.2013.03.003.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Manto MU. On the cerebello-cerebral interactions. The Cerebellum. 2006;5:286–8. https://doi.org/10.1080/14734220601003955.
  33. 33.
    Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–70. https://doi.org/10.1093/cercor/bhq246.PubMedCrossRefGoogle Scholar
  34. 34.
    Theoret H, Haque J, Pascual-Leone A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett. 2001;306(1-2):29–32. https://doi.org/10.1016/S0304-3940(01)01860-2.PubMedCrossRefGoogle Scholar
  35. 35.
    Baron JC, Bousser MG, Comar D, Castaigne P. “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans Am Neurol Assoc. 1981;105:459–61.PubMedGoogle Scholar
  36. 36.
    Szilagyi G, Vas A, Kerenyi L, Nagy Z, Csiba L, Gulyas B. Correlation between crossed cerebellar diaschisis and clinical neurological scales. Acta Neurol Scand. 2012;125(6):373–81. https://doi.org/10.1111/j.1600-0404.2011.01576.x.PubMedCrossRefGoogle Scholar
  37. 37.
    Gold L, Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci U A. 2002;99(11):7699–704. https://doi.org/10.1073/pnas.112012499.CrossRefGoogle Scholar
  38. 38.
    Kamouchi M, Fujishima M, Saku Y, Ibayashi S, Iida M. Crossed cerebellar hypoperfusion in hyperacute ischemic stroke. J Neurol Sci. 2004;225(1-2):65–9. https://doi.org/10.1016/j.jns.2004.07.004.PubMedCrossRefGoogle Scholar
  39. 39.
    Miura H, Nagata K, Hirata Y, Satoh Y, Watahiki Y, Hatazawa J. Evolution of crossed cerebellar diaschisis in middle cerebral artery infarction. J Neuroimaging. 1994;4(2):91–6. https://doi.org/10.1111/jon19944291.PubMedCrossRefGoogle Scholar
  40. 40.
    Takasawa M, Watanabe M, Yamamoto S, Hoshi T, Sasaki T, Hashikawa K, et al. Prognostic value of subacute crossed cerebellar diaschisis: single-photon emission CT study in patients with middle cerebral artery territory infarct. AJNR Am J Neuroradiol. 2002;23(2):189–93.PubMedGoogle Scholar
  41. 41.
    Bindman LJ, Lippold OC, Redfearn JW. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature. 1962;196(4854):584–5. https://doi.org/10.1038/196584a0.PubMedCrossRefGoogle Scholar
  42. 42.
    Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22(2):495–504. https://doi.org/10.1111/j.1460-9568.2005.04233.x.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Schulz R, Frey BM, Koch P, Zimerman M, Bönstrup M, Feldheim J, et al. Cortico-cerebellar structural connectivity is related to residual motor output in chronic stroke. Cereb Cortex. 2017;27:635–45. https://doi.org/10.1093/cercor/bhv251.
  44. 44.
    Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13. https://doi.org/10.1002/ana.410370603.PubMedCrossRefGoogle Scholar
  45. 45.
    Rothwell JC. Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Hum Mov Sci. 2011;30(5):906–15. https://doi.org/10.1016/j.humov.2010.07.007.PubMedCrossRefGoogle Scholar
  46. 46.
    Kikuchi S, Mochizuki H, Moriya A, Nakatani-Enomoto S, Nakamura K, Hanajima R, et al. Ataxic hemiparesis: neurophysiological analysis by cerebellar transcranial magnetic stimulation. Cerebellum. 2012;11(1):259–63. https://doi.org/10.1007/s12311-011-0303-0.PubMedCrossRefGoogle Scholar
  47. 47.
    Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, et al. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1997;104(5):453–8. https://doi.org/10.1016/S0168-5597(97)00051-8.PubMedCrossRefGoogle Scholar
  48. 48.
    Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22. https://doi.org/10.1523/JNEUROSCI.2184-09.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90. https://doi.org/10.1097/01.wco.0000200544.29915.cc.PubMedCrossRefGoogle Scholar
  50. 50.
    Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4. https://doi.org/10.1126/science.272.5269.1791.PubMedCrossRefGoogle Scholar
  51. 51.
    Askim T, Indredavik B, Vangberg T, Haberg A. Motor network changes associated with successful motor skill relearning after acute ischemic stroke: a longitudinal functional magnetic resonance imaging study. Neurorehabil Neural Repair. 2009;23(3):295–304. https://doi.org/10.1177/1545968308322840.PubMedCrossRefGoogle Scholar
  52. 52.
    Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–7. https://doi.org/10.1016/j.conb.2005.03.004.PubMedCrossRefGoogle Scholar
  53. 53.
    Hardwick RM, Rottschy C, Miall RC, Eickhoff SB. A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage. 2013;67:283–97. https://doi.org/10.1016/j.neuroimage.2012.11.020.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, et al. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci. 2015;35(7):3285–90. https://doi.org/10.1523/JNEUROSCI.2885-14.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wessel MJ, Zimerman M, Timmermann JE, Heise KF, Gerloff C, Hummel FC. Enhancing consolidation of a new temporal motor skill by cerebellar noninvasive stimulation. Cereb Cortex. 2016;26(4):1660–7. https://doi.org/10.1093/cercor/bhu335.PubMedCrossRefGoogle Scholar
  56. 56.
    Di Lazzaro V, Restuccia D, Molinari M, Leggio MG, Nardone R, Fogli D, et al. Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 1994;57(1):108–10. https://doi.org/10.1136/jnnp.57.1.108.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Liepert J, Kucinski T, Tuscher O, Pawlas F, Baumer T, Weiller C. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35(11):2484–8. https://doi.org/10.1161/01.STR.0000143152.45801.ca.PubMedCrossRefGoogle Scholar
  58. 58.
    De Vico FF, Clausi S, Leggio M, Chavez M, Valencia M, Maglione AG, et al. Interhemispheric connectivity characterizes cortical reorganization in motor-related networks after cerebellar lesions. Cerebellum. 2017;16:358–75. https://doi.org/10.1007/s12311-016-0811-z.
  59. 59.
    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum Lond Engl. 2014;13(1):151–77. https://doi.org/10.1007/s12311-013-0511-x.CrossRefGoogle Scholar
  60. 60.
    Sui R, Zhang L. Cerebellar dysfunction may play an important role in vascular dementia. Med Hypotheses. 2012;78:162–5. https://doi.org/10.1016/j.mehy.2011.10.017.
  61. 61.
    Chida K, Ogasawara K, Aso K, Suga Y, Kobayashi M, Yoshida K, et al. Postcarotid endarterectomy improvement in cognition is associated with resolution of crossed cerebellar hypoperfusion and increase in 123I-iomazenil uptake in the cerebral cortex: a SPECT study. Cerebrovasc Dis Basel Switz. 2010;29(4):343–51. https://doi.org/10.1159/000278930.CrossRefGoogle Scholar
  62. 62.
    Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A, Ghahremani A, et al. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. NeuroImage. 2017;158:48–57. https://doi.org/10.1016/j.neuroimage.2017.06.048.PubMedCrossRefGoogle Scholar
  63. 63.
    Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58(4):553–60. https://doi.org/10.1002/ana.20604.PubMedCrossRefGoogle Scholar
  64. 64.
    Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. J Neurosci. 2011;31(6):2305–12. https://doi.org/10.1523/JNEUROSCI.4358-10.2011.PubMedCrossRefGoogle Scholar
  65. 65.
    van Dun K, Bodranghien F, Manto M, Marien P. Targeting the cerebellum by noninvasive neurostimulation: a review. Cerebellum. 2017;16(3):695–741. https://doi.org/10.1007/s12311-016-0840-7.PubMedCrossRefGoogle Scholar
  66. 66.
    Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. https://doi.org/10.1016/j.neuron.2010.03.035.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:317. https://doi.org/10.3389/fnhum.2013.00317.
  68. 68.
    Valero-Cabre A, Payne BR, Pascual-Leone A. Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res. 2007;176(4):603–15. https://doi.org/10.1007/s00221-006-0639-8.PubMedCrossRefGoogle Scholar
  69. 69.
    Huang YZ, Chen RS, Rothwell JC, Wen HY. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118(5):1028–32. https://doi.org/10.1016/j.clinph.2007.01.021.PubMedCrossRefGoogle Scholar
  70. 70.
    Naro A, Bramanti A, Leo A, Manuli A, Sciarrone F, Russo M, et al. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct. 2017;222(6):2891–906. https://doi.org/10.1007/s00429-016-1355-1.PubMedCrossRefGoogle Scholar
  71. 71.
    Morellini N, Grehl S, Tang A, Rodger J, Mariani J, Lohof AM, et al. What does low-intensity rTMS do to the cerebellum? Cerebellum. 2015;14(1):23–6. https://doi.org/10.1007/s12311-014-0617-9.PubMedCrossRefGoogle Scholar
  72. 72.
    Koch G, Mori F, Marconi B, Codeca C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119(11):2559–69. https://doi.org/10.1016/j.clinph.2008.08.008.PubMedCrossRefGoogle Scholar
  73. 73.
    Doeltgen SH, Young J, Bradnam LV. Anodal direct current stimulation of the cerebellum reduces cerebellar brain inhibition but does not influence afferent input from the hand or face in healthy adults. Cerebellum. 2016;15(4):466–74. https://doi.org/10.1007/s12311-015-0713-5.PubMedCrossRefGoogle Scholar
  74. 74.
    Naro A, Leo A, Russo M, Cannavo A, Milardi D, Bramanti P, et al. Does transcranial alternating current stimulation induce cerebellum plasticity? Feasibility, safety and efficacy of a novel electrophysiological approach. Brain Stimul. 2016;9(3):388–95. https://doi.org/10.1016/j.brs.2016.02.005.PubMedCrossRefGoogle Scholar
  75. 75.
    Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3(3):161–9. https://doi.org/10.1016/j.brs.2009.10.001.PubMedCrossRefGoogle Scholar
  76. 76.
    Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93. https://doi.org/10.1016/j.neulet.2004.11.053.PubMedCrossRefGoogle Scholar
  77. 77.
    Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176(3):440–7. https://doi.org/10.1007/s00221-006-0628-y.PubMedCrossRefGoogle Scholar
  78. 78.
    Langguth B, Eichhammer P, Zowe M, Landgrebe M, Binder H, Sand P, et al. Modulating cerebello-thalamocortical pathways by neuronavigated cerebellar repetitive transcranial stimulation (rTMS). Neurophysiol Clin. 2008;38(5):289–95. https://doi.org/10.1016/j.neucli.2008.08.003.PubMedCrossRefGoogle Scholar
  79. 79.
    Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci. 2004;16(9):1605–11. https://doi.org/10.1162/0898929042568488.PubMedCrossRefGoogle Scholar
  80. 80.
    Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol. 2012;590(4):887–97. https://doi.org/10.1113/jphysiol.2011.218537.PubMedCrossRefGoogle Scholar
  81. 81.
    Li Voti P, Conte A, Rocchi L, Bologna M, Khan N, Leodori G, et al. Cerebellar continuous theta-burst stimulation affects motor learning of voluntary arm movements in humans. Eur J Neurosci. 2014;39(1):124–31. https://doi.org/10.1111/ejn.12391.PubMedCrossRefGoogle Scholar
  82. 82.
    Sebastian R, Saxena S, Tsapkini K, Faria AV, Long C, Wright A, et al. Cerebellar tDCS: a novel approach to augment language treatment post-stroke. Front Hum Neurosci. 2017;10:695. https://doi.org/10.3389/fnhum.2016.00695.
  83. 83.
    Kim WS, Jung SH, Oh MK, Min YS, Lim JY, Paik NJ. Effect of repetitive transcranial magnetic stimulation over the cerebellum on patients with ataxia after posterior circulation stroke: a pilot study. J Rehabil Med. 2014;46(5):418–23. https://doi.org/10.2340/16501977-1802.PubMedCrossRefGoogle Scholar
  84. 84.
    Bonni S, Ponzo V, Caltagirone C, Koch G. Cerebellar theta burst stimulation in stroke patients with ataxia. Funct Neurol. 2014;29(1):41–5. https://doi.org/10.11138/FNeur/2014.29.1.041.
  85. 85.
    Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(1):175–90. https://doi.org/10.1113/jphysiol.2003.055772.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5(6):436–52. https://doi.org/10.1016/0014-4886(62)90056-0.PubMedCrossRefGoogle Scholar
  87. 87.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12(4):485–92. https://doi.org/10.1007/s12311-012-0436-9.PubMedCrossRefGoogle Scholar
  89. 89.
    Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94. https://doi.org/10.1016/j.brs.2012.03.006.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2017. https://doi.org/10.1007/s12311-017-0877-2.
  91. 91.
    Block HJ, Celnik P. Can cerebellar transcranial direct current stimulation become a valuable neurorehabilitation intervention? Expert Rev Neurother. 2012;12(11):1275–7. https://doi.org/10.1586/ern.12.121.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Celnik P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum. 2015;14(2):171–4. https://doi.org/10.1007/s12311-014-0607-y.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14(1):27–30. https://doi.org/10.1007/s12311-014-0599-7.PubMedCrossRefGoogle Scholar
  94. 94.
    Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016;22(1):83–97. https://doi.org/10.1177/1073858414559409.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    van Dun K, Bodranghien FC, Marien P, Manto MU. tDCS of the cerebellum: where do we stand in 2016? Technical issues and critical review of the literature. Front Hum Neurosci. 2016;10:199. https://doi.org/10.3389/fnhum.2016.00199.
  96. 96.
    Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1(2):97–105. https://doi.org/10.1016/j.brs.2007.10.001.PubMedCrossRefGoogle Scholar
  97. 97.
    Moliadze V, Antal A, Paulus W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol. 2010;588(24):4891–904. https://doi.org/10.1113/jphysiol.2010.196998.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24(3):333–9. https://doi.org/10.1016/j.cub.2013.12.041.PubMedCrossRefGoogle Scholar
  99. 99.
    Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5(11):e13766. https://doi.org/10.1371/journal.pone.0013766.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Polania R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22(14):1314–8. https://doi.org/10.1016/j.cub.2012.05.021.PubMedCrossRefGoogle Scholar
  101. 101.
    Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016;2016:3616807. http://doi.org/10.1155/2016/3616807.
  102. 102.
    Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–99. https://doi.org/10.1016/j.neuron.2007.06.026.PubMedCrossRefGoogle Scholar
  103. 103.
    Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMSCG. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39. https://doi.org/10.1016/j.clinph.2009.08.016.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6. https://doi.org/10.1016/j.neuron.2004.12.033.PubMedCrossRefGoogle Scholar
  105. 105.
    Miall RC, Christensen LO. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci Lett. 2004;371(2-3):185–9. https://doi.org/10.1016/j.neulet.2004.08.067.PubMedCrossRefGoogle Scholar
  106. 106.
    Koch G. Repetitive transcranial magnetic stimulation: a tool for human cerebellar plasticity. Funct Neurol. 2010;25(3):159–63.PubMedGoogle Scholar
  107. 107.
    Minks E, Kopickova M, Marecek R, Streitova H, Bares M. Transcranial magnetic stimulation of the cerebellum. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):133–9. https://doi.org/10.5507/bp.2010.020.PubMedCrossRefGoogle Scholar
  108. 108.
    Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73(1):167–80. https://doi.org/10.1007/BF00279670.PubMedCrossRefGoogle Scholar
  109. 109.
    Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage Clin. 2016;12:765–75. https://doi.org/10.1016/j.nicl.2016.10.013.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Machado AG, Cooperrider J, Furmaga HT, Baker KB, Park HJ, Chen Z, et al. Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery. 2013;73(2):344–53. https://doi.org/10.1227/01.neu.0000430766.80102.ac.
  111. 111.
    Jorgensen HS. The Copenhagen Stroke Study experience. J Stroke Cerebrovasc Dis. 1996;6(1):5–16. https://doi.org/10.1016/S1052-3057(96)80020-6.PubMedCrossRefGoogle Scholar
  112. 112.
    Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: pathophysiology and rehabilitation strategies. Neurophysiol Clin. 2015;45(4-5):335–55. https://doi.org/10.1016/j.neucli.2015.09.005.PubMedCrossRefGoogle Scholar
  113. 113.
    Chieffo R, Comi G, Leocani L. Noninvasive neuromodulation in poststroke gait disorders: rationale, feasibility, and state of the art. Neurorehabil Neural Repair. 2015;30:71–82. https://doi.org/10.1177/1545968315586464.
  114. 114.
    Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7. https://doi.org/10.1152/jn.00645.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Fernandez L, Albein-Urios N, Kirkovski M, McGinley JL, Murphy AT, Hyde C, et al. Cathodal transcranial direct current stimulation (tDCS) to the right cerebellar hemisphere affects motor adaptation during gait. Cerebellum. 2017;16(1):168–77. https://doi.org/10.1007/s12311-016-0788-7.PubMedCrossRefGoogle Scholar
  116. 116.
    Naro A, Milardi D, Cacciola A, Russo M, Sciarrone F, La Rosa G, et al. What do we know about the influence of the cerebellum on walking ability? Promising findings from transcranial alternating current stimulation. Cerebellum. 2017;16(4):859–67. https://doi.org/10.1007/s12311-017-0859-4.PubMedCrossRefGoogle Scholar
  117. 117.
    Nijsse B, Visser-Meily JM, van Mierlo ML, Post MW, de Kort PL, van Heugten CM. Temporal evolution of Poststroke cognitive impairment using the Montreal Cognitive Assessment. Stroke. 2017;48(1):98–104. https://doi.org/10.1161/STROKEAHA.116.014168.PubMedCrossRefGoogle Scholar
  118. 118.
    Dichgans M, Leys D. Vascular cognitive impairment. Circ Res. 2017;120(3):573–91. https://doi.org/10.1161/CIRCRESAHA.116.308426.PubMedCrossRefGoogle Scholar
  119. 119.
    Brainin M, Tuomilehto J, Heiss WD, Bornstein NM, Bath PM, Teuschl Y, et al. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol. 2015;22(2):229–238, e13-6https://doi.org/10.1111/ene.12626.PubMedCrossRefGoogle Scholar
  120. 120.
    Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15(3):369–91. https://doi.org/10.1007/s12311-015-0687-3.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79. https://doi.org/10.1093/brain/121.4.561.PubMedCrossRefGoogle Scholar
  122. 122.
    Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99. https://doi.org/10.1080/02699931.2011.619520.PubMedCrossRefGoogle Scholar
  123. 123.
    Turkeltaub PE, Swears MK, D’Mello AM, Stoodley CJ. Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restor Neurol Neurosci. 2016;34(4):491–505. https://doi.org/10.3233/RNN-150633.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6(4):649–53. https://doi.org/10.1016/j.brs.2012.10.001.PubMedCrossRefGoogle Scholar
  125. 125.
    Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97. https://doi.org/10.1162/jocn.2008.20112.PubMedCrossRefGoogle Scholar
  126. 126.
    Macher K, Bohringer A, Villringer A, Pleger B. Cerebellar-parietal connections underpin phonological storage. J Neurosci. 2014;34(14):5029–37. https://doi.org/10.1523/JNEUROSCI.0106-14.2014.PubMedCrossRefGoogle Scholar
  127. 127.
    Grimaldi G, Oulad Ben Taib N, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci. 2014;8:9. https://doi.org/10.3389/fnsys.2014.00009.
  128. 128.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22. https://doi.org/10.1038/nrn1953.PubMedCrossRefGoogle Scholar
  129. 129.
    Manto M, Marien P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2(1):2. https://doi.org/10.1186/s40673-015-0023-1.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039.PubMedCrossRefGoogle Scholar
  131. 131.
    Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4(4):290–4. https://doi.org/10.1080/14734220500348584.PubMedCrossRefGoogle Scholar
  132. 132.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.PubMedGoogle Scholar
  133. 133.
    Jurgens U. The efferent and afferent connections of the supplementary motor area. Brain Res. 1984;300(1):63–81. https://doi.org/10.1016/0006-8993(84)91341-6.PubMedCrossRefGoogle Scholar
  134. 134.
    Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659–73. https://doi.org/10.1523/JNEUROSCI.3134-07.2007.PubMedCrossRefGoogle Scholar
  135. 135.
    Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain. 1978;101(2):251–83. https://doi.org/10.1093/brain/101.2.251.PubMedCrossRefGoogle Scholar
  136. 136.
    Hashimoto M, Takahara D, Hirata Y, Inoue K, Miyachi S, Nambu A, et al. Motor and non-motor projections from the cerebellum to rostrocaudally distinct sectors of the dorsal premotor cortex in macaques. Eur J Neurosci. 2010;31(8):1402–13. https://doi.org/10.1111/j.1460-9568.2010.07151.x.PubMedCrossRefGoogle Scholar
  137. 137.
    Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66. https://doi.org/10.1016/S0079-6123(08)63386-5.PubMedCrossRefGoogle Scholar
  138. 138.
    Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to “AIP”. Cereb Cortex. 2005;15(7):913–20. https://doi.org/10.1093/cercor/bhh190.PubMedCrossRefGoogle Scholar
  139. 139.
    Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28. https://doi.org/10.1093/cercor/bhp091.PubMedCrossRefGoogle Scholar
  140. 140.
    Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22(4):451–7.PubMedGoogle Scholar
  141. 141.
    Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2(2):133–46. https://doi.org/10.1002/jnr.490020204.PubMedCrossRefGoogle Scholar
  142. 142.
    Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG, Hummel FC. Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann Neurol. 2013;73(1):10–5. https://doi.org/10.1002/ana.23761.PubMedCrossRefGoogle Scholar
  143. 143.
    Samaei A, Ehsani F, Zoghi M, Hafez Yosephi M, Jaberzadeh S. Online and offline effects of cerebellar transcranial direct current stimulation on motor learning in healthy older adults: a randomized double-blind sham-controlled study. Eur J Neurosci. 2017;45(9):1177–85. https://doi.org/10.1111/ejn.13559.PubMedCrossRefGoogle Scholar
  144. 144.
    Ehsani F, Bakhtiary AH, Jaberzadeh S, Talimkhani A, Hajihasani A. Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: a randomized double-blind sham-controlled study. Neurosci Res. 2016;112:10–9. https://doi.org/10.1016/j.neures.2016.06.003.PubMedCrossRefGoogle Scholar
  145. 145.
    Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30. https://doi.org/10.1007/s00221-005-2334-6.PubMedCrossRefGoogle Scholar
  146. 146.
    Miler JA, Meron D, Baldwin DS, Garner M. The effect of prefrontal transcranial direct current stimulation on attention network function in healthy volunteers. Neuromodulation. 2017. https://doi.org/10.1111/ner.12629.
  147. 147.
    Hulst T, John L, Kuper M, van der Geest JN, Goricke SL, Donchin O, et al. Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force field reaching adaptation. J Neurophysiol. 2017;118(2):732–48. https://doi.org/10.1152/jn.00808.2016.PubMedCrossRefGoogle Scholar
  148. 148.
    Jalali R, Miall RC, Galea JM. No consistent effect of cerebellar transcranial direct current stimulation (tDCS) on visuomotor adaptation. J Neurophysiol. 2017;118(2):655–65. https://doi.org/10.1152/jn.00896.2016.PubMedCrossRefGoogle Scholar
  149. 149.
    Spielmann K, van der Vliet R, van de Sandt-Koenderman WM, Frens MA, Ribbers GM, Selles RW, et al. Cerebellar cathodal transcranial direct stimulation and performance on a verb generation task: a replication study. Neural Plast. 2017;2017:1254615. https://doi.org/10.1155/2017/1254615.
  150. 150.
    Verhage MC, Avila EO, Frens MA, Donchin O, van der Geest JN. Cerebellar tDCS does not enhance performance in an implicit categorization learning task. Front Psychol. 2017;8:476. https://doi.org/10.3389/fpsyg.2017.00476.
  151. 151.
    Cooper IS. Twenty-five years of experience with physiological neurosurgery. Neurosurgery. 1981;9(2):190–200. https://doi.org/10.1227/00006123-198108000-00017.PubMedCrossRefGoogle Scholar
  152. 152.
    Oulad Ben Taib N, Manto M. Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plast. 2013;2013:613197. https://doi.org/10.1155/2013/613197.
  153. 153.
    Teixeira MJ, Cury RG, Galhardoni R, Barboza VR, Brunoni AR, Alho E, et al. Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. Neurology. 2015;85(23):2075–6. https://doi.org/10.1212/WNL.0000000000002204.PubMedCrossRefGoogle Scholar

via Non-invasive Cerebellar Stimulation: a Promising Approach for Stroke Recovery? | SpringerLink

, , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: