[Abstract] Longitudinal Recovery of Executive Control Functions After Moderate-Severe Traumatic Brain Injury: Examining Trajectories of Variability and Ex-Gaussian Parameters

Background. Executive control deficits are deleterious and enduring consequences of moderate-severe traumatic brain injury (TBI) that disrupt everyday functioning. Clinically, such impairments can manifest as behavioural inconsistency, measurable experimentally by the degree of variability across trials of a reaction time (RT) task (also known as intraindividual variability [IIV]). Growing research on cognition after TBI points to cognitive deterioration in the chronic stages postinjury. Objective. To examine the longitudinal recovery of RT characteristics (IIV and more detailed ex-Gaussian components, as well as the number of impulsively quick responses) following moderate-severe TBI. Methods. Seventy moderate-severe TBI patients were assessed at 2, 5, 12, and 24+ months postinjury on a go/no-go RT task. RT indices (ex-Gaussian parameters mu and sigma [mean and variability of the normal distribution component], and tau [extremely slow responses]; mean, intraindividual coefficient of variation [ICV], and intraindividual standard deviation [ISD]) were analyzed with repeated-measures multivariate analysis of variance. Results. ICV, ISD, and ex-Gaussian tau significantly decreased (ie, improved) over time in the first year of injury, but worsened from 1 to 2+ years, as did the frequency of extremely fast responses. These quadratic patterns were accentuated by age and shown primarily in tau (extremely slow) and extremely fast (impulsive) responses. Conclusions. The pattern of early recovery followed by decline in executive control function is consistent with growing evidence that moderate-severe TBI is a progressive and degenerative disorder. Given the responsiveness to treatment of executive control deficits, elucidating the trajectory and underpinnings of inconsistent behavioral responding may reveal novel prognostic and clinical management opportunities.

1. Azouvi, P, Couillet, J, Leclercq, M, Martin, Y, Asloun, S, Rousseaux, M. Divided attention and mental effort after severe traumatic brain injury. Neuropsychologia. 2004;42:12601268. doi:10.1016/j.neuropsychologia.2004.01.001. Google ScholarCrossrefMedline
2. Dockree, PM, Bellgrove, MA, O’Keeffe, FM. Sustained attention in traumatic brain injury (TBI) and healthy controls: enhanced sensitivity with dual-task load. Exp Brain Res. 2006;168:218229. doi:10.1007/s00221-005-0079-x. Google ScholarCrossrefMedline
3. Ponsford, JL, Downing, MG, Olver, J. Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J Neurotrauma. 2014;31:6477. doi:10.1089/neu.2013.2997. Google ScholarCrossrefMedline
4. Green, RE, Colella, B, Christensen, B. Examining moderators of cognitive recovery trajectories after moderate to severe traumatic brain injury. Arch Phys Med Rehabil. 2008;89(12 suppl):S16S24. doi:10.1016/j.apmr.2008.09.551. Google ScholarCrossrefMedline
5. Stuss, DT, Pogue, J, Buckle, L, Bondar, J. Characterization of stability of performance in patients with traumatic brain injury: variability and consistency on reaction time tests. Neuropsychology. 1994;8:316324. doi:10.1037/0894-4105.8.3.316. Google ScholarCrossref
6. West, R, Murphy, KJ, Armilio, ML, Craik, FIM, Stuss, DT. Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain Cogn. 2002;49:402419. doi:10.1006/brcg.2001.1507. Google ScholarCrossrefMedlineISI
7. Segalowitz, SJ, Dywan, J, Unsal, A. Attentional factors in response time variability after traumatic brain injury: an ERP study. J Int Neuropsychol Soc. 1997;3:95107Google ScholarMedline
8. Sinclair, KL, Ponsford, JL, Rajaratnam, SMW, Anderson, C. Sustained attention following traumatic brain injury: use of the Psychomotor Vigilance Task. J Clin Exp Neuropsychol. 2013;35:210224. doi:10.1080/13803395.2012.762340. Google ScholarCrossrefMedline
9. Slovarp, L, Azuma, T, Lapointe, L. The effect of traumatic brain injury on sustained attention and working memory. Brain Inj. 2012;26:4857. doi:10.3109/02699052.2011.635355. Google ScholarCrossrefMedline
10. Stuss, DT, Stethem, LL, Hugenholtz, H, Picton, T, Pivik, J, Richard, MT. Reaction time after head injury: fatigue, divided and focused attention, and consistency of performance. J Neurol Neurosurg Psychiatry. 1989;52:742748Google ScholarCrossrefMedline
11. Whyte, J, Polansky, M, Fleming, M, Coslett, HB, Cavallucci, C. Sustained arousal and attention after traumatic brain injury. Neuropsychologia. 1995;33:797813Google ScholarCrossrefMedlineISI
12. Collins, LF, Long, CJ. Visual reaction time and its relationship to neuropsychological test performance. Arch Clin Neuropsychol. 1996;11:613623Google ScholarCrossrefMedline
13. Vasquez, BP, Binns, MA, Anderson, ND. Staying on task: age-related changes in the relationship between executive functioning and response time consistency. J Gerontol B Psychol Sci Soc Sci. 2016;71:189200. doi:10.1093/geronb/gbu140. Google ScholarCrossrefMedline
14. Lacouture, Y, Cousineau, D. How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials Quant Methods Psychol. 2008;4:3545. doi:10.20982/tqmp.04.1.p035. Google ScholarCrossref
15. Cicerone, KD, Maestas, KL. Rehabilitation of attention and executive function impairments. In: Sherer, M, Sanders, AM, eds. Handbook on the Neuropsychology of Traumatic Brain Injury. New York, NYSpringer2014:191211. doi:10.1007/978-1-4939-0784-7_10. Google ScholarCrossref
16. Christensen, BK, Colella, B, Inness, E. Recovery of cognitive function after traumatic brain injury: a multilevel modeling analysis of Canadian outcomes. Arch Phys Med Rehabil. 2008;89(12 suppl):S3S15. doi:10.1016/j.apmr.2008.10.002. Google ScholarCrossrefMedline
17. Masel, BE, DeWitt, DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27:15291540. doi:10.1089/neu.2010.1358. Google ScholarCrossrefMedlineISI
18. Till, C, Colella, B, Verwegen, J, Green, RE. Postrecovery cognitive decline in adults with traumatic brain injury. Arch Phys Med Rehabil. 2008;89(12 suppl):S25S34. doi:10.1016/j.apmr.2008.07.004. Google ScholarCrossrefMedline
19. Millis, SR, Rosenthal, M, Novack, TA. Long-term neuropsychological outcome after traumatic brain injury. J Head Trauma Rehabil. 2001;16:343355Google ScholarCrossrefMedlineISI
20. Ruff, RM, Young, D, Gautille, T. Verbal learning deficits following severe head injury: heterogeneity in recovery over 1 year. J Neurosurg. 1991;75(1s):S50S58Google Scholar
21. Himanen, L, Portin, R, Isoniemi, H, Helenius, H, Kurki, T, Tenovuo, O. Longitudinal cognitive changes in traumatic brain injury: a 30-year follow-up study. Neurology. 2006;66:187192. doi:10.1212/01.wnl.0000194264.60150.d3. Google ScholarCrossrefMedline
22. Hetherington, CR, Stuss, DT, Finlayson, MA. Reaction time and variability 5 and 10 years after traumatic brain injury. Brain Inj. 1996;10:473486Google ScholarCrossrefMedlineISI
23. MacDonald, SWS, Hultsch, DF, Dixon, RA. Performance variability is related to change in cognition: evidence from the Victoria Longitudinal Study. Psychol Aging. 2003;18:510523. doi:10.1037/0882-7974.18.3.510. Google ScholarCrossrefMedlineISI
24. Bielak, AM, Cherbuin, N, Bunce, D, Anstey, KJ. Intraindividual variability is a fundamental phenomenon of aging: evidence from an 8-year longitudinal study across young, middle, and older adulthood. Dev Psychol. 2014;50:143151. doi:10.1037/a0032650. Google ScholarCrossrefMedline
25. Levin, HS, O’Donnell, VM, Grossman, RG. The Galveston orientation and amnesia test. A practical scale to assess cognition after head injury. J Nerv Ment Dis. 1979;167:675684Google ScholarCrossrefMedlineISI
26. Green REA. Editorial: brain injury as a neurodegenerative disorder. Front Hum Neurosci. 2016;9:615. doi:10.3389/fnhum.2015.00615. Google ScholarCrossref
27. Robertson, IH, Manly, T, Andrade, J, Baddeley, BT, Yiend, J. “Oops!”: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia. 1997;35:747758Google ScholarCrossrefMedlineISI
28. Hultsch, DF, Strauss, E, Hunter, MA, MacDonald, SWS. Intraindividual variability, cognition, and aging. In: Craik, FIM, Salthouse, TA, eds. The Handbook of Aging and Cognition. 3rd ed. New York, NYPsychology Press2008:491556Google Scholar
29. Dixon, RA, Garrett, DD, Lentz, TL, MacDonald, SWS, Strauss, E, Hultsch, DF. Neurocognitive markers of cognitive impairment: exploring the roles of speed and inconsistency. Neuropsychology. 2007;21:381399. doi:10.1037/0894-4105.21.3.381. Google ScholarCrossrefMedlineISI
30. MacDonald, SWS, Hultsch, DF, Bunce, D. Intraindividual variability in vigilance performance : does degrading visual stimuli mimic age-related “neural noise?“ J Clin Exp Neuropsychol. 2006;28:655675. doi:10.1080/13803390590954245. Google ScholarCrossrefMedline
31. Garrett, DD, MacDonald, SWS, Craik, FIM. Intraindividual reaction time variability is malleable: feedback- and education-related reductions in variability with age. Front Hum Neurosci. 2012;6:101. doi:10.3389/fnhum.2012.00101. Google ScholarCrossrefMedline
32. Beharelle, AR, Kovačević, N, McIntosh, AR, Levine, B. Brain signal variability relates to stability of behavior after recovery from diffuse brain injury. Neuroimage. 2012;60:15281537. doi:10.1016/j.neuroimage.2012.01.037. Google ScholarCrossrefMedline
33. Gmehlin, D, Fuermaier, ABM, Walther, S. Intraindividual variability in inhibitory function in adults with ADHD—an ex-Gaussian approach. PLoS One. 2014;9:e112298. doi:10.1371/journal.pone.0112298.Google ScholarCrossrefMedline
34. MacFlynn, G, Montgomery, EA, Fenton, GW, Rutherford, W. Measurement of reaction time following minor head injury. J Neurol Neurosurg Psychiatry. 1984;47:13261331Google ScholarCrossrefMedline
35. Dykiert, D, Der, G, Starr, JM, Deary, IJ. Sex differences in reaction time mean and intraindividual variability across the life span. Dev Psychol. 2012;48:12621276. doi:10.1037/a0027550. Google ScholarCrossrefMedline
36. Williams, BR, Hultsch, DF, Strauss, EH, Hunter, MA, Tannock, R. Inconsistency in reaction time across the life span. Neuropsychology. 2005;19:8896. doi:10.1037/0894-4105.19.1.88. Google ScholarCrossrefMedline
37. Farbota, KDM, Sodhi, A, Bendlin, BB. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study. J Int Neuropsychol Soc. 2012;18:10061018. doi:10.1017/S1355617712000835. Google ScholarCrossrefMedline
38. Green, RE, Colella, B, Maller, JJ, Bayley, M, Glazer, J, Mikulis, DJ. Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Front Hum Neurosci. 2014;8:67. doi:10.3389/fnhum.2014.00067.Google ScholarCrossrefMedline

via Longitudinal Recovery of Executive Control Functions After Moderate-Severe Traumatic Brain Injury: Examining Trajectories of Variability and Ex-Gaussian Parameters – Brandon P. Vasquez, Jennifer C. Tomaszczyk, Bhanu Sharma, Brenda Colella, Robin E. A. Green, 2018

, , , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: