[Abstract + References] A Multi-channel EMG-Driven FES Solution for Stroke Rehabilitation – Conference paper


Functional electrical stimulation (FES) has been applied to stroke rehabilitation for many years. However, users are usually involved in open-loop fixed cycle FES systems in clinical, which is easy to cause muscle fatigue and reduce rehabilitation efficacy. This paper proposes a multi-surface EMG-driven FES integration solution for enhancing upper-limb stroke rehabilitation. This wireless portable system consists of sEMG data acquisition module and FES module, the former is used to capture sEMG signals, the latter of multi-channel FES output can be driven by the sEMG. Preliminary experiments proved that the system has outperformed existing similar systems and that sEMG can be effectively employed to achieve different FES intensity, demonstrating the potential for active stroke rehabilitation.


  1. 1.
    Lynch, C.L., Popovic, M.R.: Functional electrical stimulation. IEEE Control Syst. 28(2), 40–50 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Liberson, W.: Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42, 101 (1961)Google Scholar
  3. 3.
    Popović, D.B.: Advances in functional electrical stimulation (FES). J. Electromyogr. Kinesiol. 24(6), 795–802 (2014)CrossRefGoogle Scholar
  4. 4.
    Lyons, G.M., Sinkjær, T., Burridge, J.H., Wilcox, D.J.: A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 260–279 (2002)CrossRefGoogle Scholar
  5. 5.
    Edgerton, V.R., Roy, R.R.: Robotic training and spinal cord plasticity. Brain Res. Bull. 78(1), 4–12 (2009)CrossRefGoogle Scholar
  6. 6.
    Lotze, M., Braun, C., Birbaumer, N., Anders, S., Cohen, L.G.: Motor learning elicited by voluntary drive. Brain 126(4), 866–872 (2003)CrossRefGoogle Scholar
  7. 7.
    Quandt, F., Hummel, F.C.: The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review. Exp. Trans. Stroke Med. 6(1), 9 (2014)CrossRefGoogle Scholar
  8. 8.
    Hong, I.K., Choi, J.B., Lee, J.H.: Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke. Stroke 43(9), 2506–2509 (2012)CrossRefGoogle Scholar
  9. 9.
    Fujiwara, T.: Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (hands) therapy in patients with chronic stroke. Neurorehabilitation Neural Repair 23(2), 125–132 (2009)CrossRefGoogle Scholar
  10. 10.
    Fang, Y., Zhu, X., Liu, H.: Development of a surface EMG acquisition system with novel electrodes configuration and signal representation. In: Lee, J., Lee, M.C., Liu, H., Ryu, J.-H. (eds.) ICIRA 2013. LNCS (LNAI), vol. 8102, pp. 405–414. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40852-6_41CrossRefGoogle Scholar
  11. 11.
    Forvi, E., et al.: Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. Sens. Actuators A Phys. 180, 177–186 (2012)CrossRefGoogle Scholar

via A Multi-channel EMG-Driven FES Solution for Stroke Rehabilitation | SpringerLink

, , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: