[Abstract + References] Novel Assessment Measures of Upper-Limb Function in Pre and Poststroke Rehabilitation: A Pilot Study – IEEE Conference Publication


Hand function assessment is essential for upper limb rehabilitation of stroke survivors. Conventional acquisition devices have inherent and restrictive difficulties for their clinical usage. Data gloves are limited for applications outside the medical environment, and motion tracking systems setup are time and personnel demanding. We propose a novel instrument designed as a replica of a glass, equipped with an omnidirectional vision system to capture hand images and an inertial measurement unit for movements kinematic data acquisition. Four stroke survivors were invited as volunteers in pre and post-treatment experiments for its evaluating. The exercise of drinking water from a glass was elected for the trails. Before treatment, subjects used their contralesional and ipsilateral hands to perform them. Two main functional features were found in the data analysis. There were differences between limbs in the grasping hand postures, mainly in the index and thumb abduction angle, and in the task timing. After treatment, two volunteers repeated the protocol with their contralesional hands. Changes in the features were observed, index and thumb abduction angles were greater in both cases, and tasks timing were altered in distinct ways. These preliminary results suggest the instrument can be used both in evaluation of hand functional deficit and rehabilitation progress. Improvements and future work are also presented.
1. R. L. Sacco, S. E. Kasner, J. P. Broderick, L. R. Caplan, A. Culebras, M. S. Elkind, M. G. George, A. D. Hamdan, R. T. Higashida, B. L. Hoh et al., “An updated definition of stroke for the 21st century: a statement for healthcare professionals from the american heart association/american stroke association”, Stroke, vol. 44, no. 7, pp. 2064-2089, 2013.

2. C. A. Doman, K. J. Waddell, R. R. Bailey, J. L. Moore, C. E. Lang, “Changes in upper-extremity functional capacity and daily performance during outpatient occupational therapy for people with stroke”, American Journal of Occupational Therapy, vol. 70, no. 3, pp. 7003290040pl-7003290040p11, 2016.

3. B. Brouwer, M. V. Sale, M. A. Nordstrom, “Asymmetry of motor cortex excitability during a simple motor task: relationships with handedness and manual performance”, Experimental Brain Research, vol. 138, no. 4, pp. 467-476, 2001.

4. J. Langan, P. van Donkelaar, “The influence of hand dominance on the response to a constraint-induced therapy program following stroke”, Neurorehabilitation and neural repair, vol. 22, no. 3, pp. 298-304, 2008.

5. H. I. Krebs, M. L. Aisen, B. T. Volpe, N. Hogan, “Quantization of continuous arm movements in humans with brain injury”, Proceedings of the National Academy of Sciences, vol. 96, no. 8, pp. 4645-4649, 1999.

6. B. Fisher, C. Winstein, M. Velicki, “Deficits in compensatory trajectory adjustments after unilateral sensorimotor stroke”, Experimental brain research, vol. 132, no. 3, pp. 328-344, 2000.

7. H. Sugarman, A. Avni, R. Nathan, A. Weisel-Eichler, J. Tiran, “Movement in the ipsilesional hand is segmented following unilateral brain damage”, Brain and cognition, vol. 48, no. 2-3, pp. 579-587, 2002.

8. D. A. Nowak, “The impact of stroke on the performance of grasping: usefulness of kinetic and kinematic motion analysis”, Neuroscience & Biobehavioral Reviews, vol. 32, no. 8, pp. 1439-1450, 2008.

9. M. Coluccini, E. S. Maini, C. Martelloni, G. Sgandurra, G. Cioni, “Kinematic characterization of functional reach to grasp in normal and in motor disabled children”, Gait & posture, vol. 25, no. 4, pp. 493-501, 2007.

10. E. Jaspers, H. Feys, H. Bruyninckx, J. Harlaar, G. Molenaers, K. Desloovere, “Upper limb kinematics: development and reliability of a clinical protocol for children”, Gait & posture, vol. 33, no. 2, pp. 279-285, 2011.

11. D. A. Nowak, J. Hermsdörfer, H. Topka, “Deficits of predictive grip force control during object manipulation in acute stroke”, Journal of neurology, vol. 250, no. 7, pp. 850-860, 2003.

12. R. W. Bohannon, “Adequacy of hand-grip dynamometry for characterizing upper limb strength after stroke”, Isokinetics and exercise science, vol. 12, no. 4, pp. 263-265, 2004.

13. H. Zhou, H. Hu, “Human motion tracking for rehabilitationâĂŤa survey”, Biomedical Signal Processing and Control, vol. 3, no. 1, pp. 1-18, 2008.

14. A. C. P. Rocha, E. Tudella, L. M. Pedro, V. C. R. Appel, L. G. P. da Silva, G. A. d. P. Caurin, “A novel device for grasping assessment during functional tasks: preliminary results”, Frontiers in bioengineering and biotechnology, vol. 4, pp. 16, 2016.

15. E. Taub, G. Uswatte, “Constraint-induced movement therapy: bridging from the primate laboratory to the stroke rehabilitation laboratory”, Journal of Rehabilitation Medicine-Supplements, vol. 41, pp. 34-40, 2003.

16. R. d. N. B. Marques, A. C. Magesto, R. E. Garcia, C. B. d. Oliveira, G. d. S. Matuti, “Efeitos da terapia por contensão induzida nas lesões encefálicas adquiridas”, Fisioterapia Brasil, vol. 17, no. 1, pp. f-30, 2016.

17. E. E. Butler, A. L. Ladd, L. E. LaMont, J. Rose, “Temporal-spatial parameters of the upper limb during a reach & grasp cycle for children”, Gait & posture, vol. 32, no. 3, pp. 301-306, 2010.

18. E. E. Butler, A. L. Ladd, S. A. Louie, L. E. LaMont, W. Wong, J. Rose, “Three-dimensional kinematics of the upper limb during a reach and grasp cycle for children”, Gait & posture, vol. 32, no. 1, pp. 72-77, 2010.

19. L. Gauthier, Structural brain changes produced by different motor therapies after stroke, 2011.

20. L. M. Pedro, G. A. de Paula Caurin, “Kinect evaluation for human body movement analysis”, Biomedical Robotics and Biomechatronics (BioRob) 2012 4th IEEE RAS & EMBS International Conference on, pp. 1856-1861, 2012.

21. A. Hussain, S. Balasubramanian, N. Roach, J. Klein, N. Jarrassé, M. Mace, A. David, S. Guy, E. Burdet, “Sitar: a system for independent task-oriented assessment and rehabilitation”, Journal of Rehabilitation and Assistive Technologies Engineering, vol. 4, pp. 2055668317729637, 2017.

22. L. R. L. Cardoso, M. N. Martelleto, P. M. Aguiar, E. Burdet, G. A. P. Caurin, L. M. Pedro, “Upper limb rehabilitation through bicycle controlling”, 24th International Congress of Mechanical Engineering, 2017.

23. M. N. Martelleto, P. M. Aguiar, E. Burdet, G. A. P. Caurin, R. V. Aroca, L. M. Pedro, “Instrumented module for investigation of contact forces for use in rehabilitation and assessment of bimanual functionalities”, 24th International Congress of Mechanical Engineering, 2017.


via Novel Assessment Measures of Upper-Limb Function in Pre and Poststroke Rehabilitation: A Pilot Study – IEEE Conference Publication

, , , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: