[Abstract + References] Evaluation of an Upper-Limb Rehabilitation Robotic Device for Home Use from Patient Perspective

Abstract

This paper presents a user study to evaluate the system’s performance by measuring objective indicators and subjective perception between the two versions of a planar rehabilitation robotic device: (i) PupArm system, called RoboTherapist 2D system for commercial purpose, designed and developed for clinical settings; and (ii) Homerehab system, developed for home use. Homerehab system is a home rehabilitation robotic platform developed inside the EU HOMEREHAB-Echord++ project framework. Nine patients with different neurological disorders participate in the study. Based on the analysis of subjective assessments of usability and the data acquired objectively by the robotic devices, we can conclude that the performance and user experience with both systems are very similar. This finding will be the base of more extensively studies to demonstrate that home-therapy with HomeRehab could be as efficient as therapy in clinical settings assisted by PupArm robot.

This work has been supported by the European Commission through the project HOMEREHAB: “Development of Robotic Technology for Post-Stroke Home Tele-Rehabilitation – Echord++” (Grant agreement: 601116); by the AURORA project (DPI2015-70415-C2-2-R), which is funded by the Spanish Ministry of Economy and Competitiveness and by the European Union through the European Regional Development Fund (ERDF), “A way to build Europe” and by Conselleria d’Educació, Cultura i Esport of Generalitat Valenciana through the grant APOTIP/2017/001.

References

1.
Go, A.S., Mozaffarian, D., Roger, V.L.: Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2014)
CrossRefGoogle Scholar
2.
Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)
CrossRefGoogle Scholar
3.
Richards, L., Hanson, C., Wellborn, M., Sethi, A.: Driving motor recovery after stroke. Top. Stroke Rehabil. 15(5), 397–411 (2008)
CrossRefGoogle Scholar
4.
Linder, S.M., Rosenfeldt, A.B., Reiss, A., Buchanan, S., Sahu, K., Bay, C.R., Wolf, S.L., Alberts, J.L.: The home stroke rehabilitation and monitoring system trial: a randomized con-trolled trial. Int. J. Stroke 8(1), 1747–4949 (2013)
CrossRefGoogle Scholar
5.
Diaz, I., Catalan, J.M., Badesa, F.J., Justo, X., Lledo, L.D., Ugartemendia, A., Gil, J.J., Díez, J., Garca-Aracil, N.: Development of a robotic device for post-stroke home tele-rehabilitation. Adv. Mech. Eng
Google Scholar
6.
Badesa, F.J., Llinares, A., Morales, R., Garcia-Aracil, N., Sabater, J.M., Perez-Vidal, C.: Pneumatic planar rehabilitation robot for post-stroke patients. Biomed. Eng. Appl. Basis Commun. 26(2), 1450025 (2014)
CrossRefGoogle Scholar
7.
Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., McClealland, I.L. (eds.) Usability Evaluation in Industry, pp. 189–194. Taylor and Francis, London (1996)
Google Scholar
8.
LLinares, A., Badesa, F.J., Morales, R., Garcia-Aracil, N., Sabater, J., Fernandez, E.: Robotic assessment of the influence of age on upper-limb sensorimotor function. Clin. Interv. Aging 8, 879 (2013).  https://doi.org/10.2147/CIA.S45900
CrossRefGoogle Scholar

via Evaluation of an Upper-Limb Rehabilitation Robotic Device for Home Use from Patient Perspective | SpringerLink

, , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: