[Abstract + References] Methods of Motion Assessment of Upper Limb for Rehabilitation Application – IEEE Conference Publication


The aim of this paper is to describe methods proposed for motion capture subsystem of smart orthosis for quantitative evaluation of movement activity of upper limbs during a rehabilitation process carried out at a clinic or at home. To quantify the description of motion we used methods of evaluation of the relationship between measured variables and nonlinear methods. To test the functionality of the methods, we compared the movement of the dominant and non-dominant limbs, assuming cyclical and acyclic movement, to obtain the expected values for a healthy population. In accordance with the goal, a group of cyclic and non-cyclic movements common to the home environment were proposed. The movements were divided according to the activities performed during sitting, standing and walking. It was: pen writing, typing on the keyboard / using the mouse, eating with a spoon and eating a croissant combing, lifting weights, reading a book, etc. Twenty healthy subjects participated in the study. Four gyro-accelerometers (Xsens Technologies B.V.) attached to the forearms and upper arms of both upper limbs were used to record the upper limb movements. The results show that the calculated values of dominant and non-dominant limb parameters differ significantly in most movements. The motion capture subsystem which uses the proposed methods can be used to valuate the physical activity for quantification of the evaluation of the rehabilitation process, and thus, it finds use in practice.
1. D. P Romilly, C Anglin, R. G Gosine, C Hershler, S. U. Raschke, “A Functional Task Analysis and Motion Simulation for the Development of a Powered Upper-Limb Orthosis”, IEEE Transactions on Rehabilitation Engineering, pp. 119-129, 1994.

2. R. Rupp, M. Rohm, M. Schneiders, A. Kreilinger, G. R Müller-Putz, “Functional rehabilitation of the paralyzed upper extremity after spinal cord injury by noninvasive hybrid neuroprostheses”, Proceedings of the IEEE, pp. 954-968, 2015.

3. R. C. Oldfield, “The assessment and analysis of handedness”, The Edinburgh inventory. Neuropsychologia, pp. 97-113, 1971.

4. P. Kutilek, O. Cakrt, J. Hejda, “Com-parative measurement of the head orientation using camera system and gyroscope system”, 13th Mediterranean conference on medical and biological engineering and computing Seville Spain IFMBE Proceedings Volume 41, pp. 1519-1522, 2013.

5. P. Kutilek, V. Socha, O. Cakrt, J. Schlenker, L. Bizovska, “Trajectory length of pitch vs. roll. Technique for assessment of postural stability”, Acta Gymnica, pp. 85-92, 2015.

6. J. H Allum, L. B. O. Nijhuis, M. G. Carpenter, “Differences in coding provided by proprioceptive and vestibular sensory signals may con-tribute to lateral instability in vestibular loss subjects”, Experimental brain research, vol. 184, no. 3, pp. 391-410, 2008.

7. Á. Gil-Agudo, L. A. Reyes-Guzman, Dimbwadyo-Terrer, I. Peñasco-Martín, B. Bernal-Sahún, A. P.López-Monteagudo, A. Ama-Espinosa, J. L Pons, “A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs”, Neural regeneration research, vol. 8, no. 19, pp. 1773-1782, 2013.

8. D. Stirling, A. Hesami, C. Ritz, K. Kdistambha, F. Naghdy, “Symbolic Modelling of Dynamic Human Motions”, Biosensors. Pier Andrea Serra, 2013.

9. F. Lorussi, N. Carbonaro, D. D. Rossi, A. Tognetti, “A biarticular model for scapular-humeral rhythm reconstruction through data from wearable sensors”, J Neuroeng Rehabil, vol. 13, pp. 40, 2016.

10. D. Winter, “Stiffness Control of Balance in Quiet Standing”, Journal of Neurophysiology, pp. 1211-1221, 1998.

11. P. Kutilek, B. Farkasova, “Prediction of Lower Extremities’ Motion by Angle-angle Diagrams and Neural Networks”, Acta of Bioengineering and Biomechanics, pp. 57-65, 2011.

12. S. M. Bruijn, “Assessing Stability of Human Locomotion: a review of current measures” in Journal of the Royal Society Interface, 2013.

13. B. Coley, B. M. Jolles, A. Farron, A. Bourgeois, F. Nussbaumer, C. Pichonnaz, K. Aminian, “Outcome evaluation in shoulder surgery using 3D kinematics sensors”, Gait& Posture, vol. 25, pp. 523-532, 2007.

14. A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, “Determining Lyapunov exponents from a time series”, Physica 16D, pp. 285-317, 1985.

15. D. E. Lake, J. S. Richman, M. P. Griffin, J. R. Moorman, “Sample entropy analysis of neona-tal heart rate variability”, American Journal of Physiology – Regulatory Integrative and Comparative Physiology, vol. 283, no. 3, 2002.

16. M. O. Sokunbi, “Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets”, Front. Neuroinform, 2014.

17. B. Singh, M. Singh, V. K. Banga, “Sample Entropy based HRV: Effect of ECG Sampling Frequency”, Biomedical Science and Engineering, 2014.

18. Z. Jian-Jun, N. Xin-Bao, Y. Xiao-Dong, H. Feng-Zhen, H. Cheng-Yu, “Decrease in Hurst expo-nent of human gait with aging and neurodegenerative diseases”, Chin. Phys. Soc. and IOP Publishing Ltd Chinese Physics B, vol. 17, 2008.

19. A. Goshvarpour, A. Goshvarpour, “Nonlinear Analysis of Human Gait Signals”, International Journal of Information Engineering and Electronic Business(IJIEEB), vol. 4, pp. 15-21, 2012.

via Methods of Motion Assessment of Upper Limb for Rehabilitation Application – IEEE Conference Publication

, , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: