[Systematic Review] Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: A systematic review and meta-analysis of randomized controlled trials – Full Text

Abstract

Objective: To evaluate whether extracorporeal shock wave therapy significantly improves spasticity in post-stroke patients.

Design: Systematic review and meta-analysis.

Data sources: PubMed, EMBASE, EBSCO, Web of Science, Cochrane CENTRAL electronic databases.

Study selection: Randomized controlled trials assessing the effect of extracorporeal shock wave therapy on post-stroke patients with spasticity were selected for inclusion.

Data extraction: Two authors independently screened the literature, extracted data, and assessed the quality of included studies. Primary outcome was modified Ashworth scale (MAS). Secondary outcomes were Modified Tardieu Scale (MTS), H/M ratio and range of motion.

Data synthesis: Eight randomized controlled trial studies (n = 385 patients) were included in the meta-analysis. There was a high level of evidence that extracorporeal shock wave therapy significantly ameliorates spasticity in post-stroke patients according to the 4 parameters: MAS (standard mean difference (SMD) −1.22; 95% confidence interval (95% CI): −1.77 to −0.66); MTS (SMD 0.70; 95% CI 0.42–0.99,); H/M ratio (weighted mean difference (WMD) –0.76; 95% CI –1.19 to –0.33); range of motion (SMD 0.69; 95% CI 0.06–1.32). However, there was no statically significant difference on the MAS at 4 weeks (SMD –1.73; 95% CI –3.99 to 0.54).

Conclusion: Extracorporeal shock wave therapy has a significant effect on spasticity in post-stroke patients.

 

Lay abstract

The effect of extracorporeal shock wave therapy on spasticity in post-stroke patients has been evaluated in several clinical trials. In addition, a recent meta-analysis suggests that such therapy is effective; however, the measurement of spasticity was based mainly on the modified Ashworth scale, which is insufficient, and a lack of  randomized controlled trials studies in the study design may have biased the results. Therefore, considering the potential limitations of the previous meta-analysis, the aim of the current study was to perform a systematic review and meta-analysis of randomized controlled trials to evaluate the effectiveness of extracorporeal shock wave therapy on spasticity in post-stroke patients. Furthermore, subgroup analysis was performed to identify potential moderators or mediators.

 

Spasticity is a common complication of various neurological diseases, such as stroke, and is often defined as a velocity-dependent increase in muscle tone, with exaggerated tendon jerks, due to hyperexcitability of the stretch reflex (1). Stroke has a high morbidity and sequelae rate. Approximately 80% of stroke patients have motor dysfunction, and spasticity status is considered to be the main determinant of this (2). Approximately 20-–40% of stroke survivors will develop spasticity (3). Futhermore, only 15.6% of post-stroke patients have a clinically relevant degree of spasticity (MAS ≥ 3) (4), and the prevalence of disabling spasticity 1 year after first-ever stroke is 4% (5). Spasticity after stroke not only limits the subject’s limb movements, but also impacts on their ability in activities of daily living (ADL), and seriously reduces quality of life (QoL). Therefore, improving spasticity post-stroke would reduce the rate of disability.

Various therapeutic interventions can be used to reduce spasticity, including botulinum toxin (BTX) injections, pharmacological treatment, physical therapy (electrical stimulation, thermotherapy), occupational therapy, and chemical neurolysis (6–9). Extracorporeal shock waves have been reported to be a potential therapeutic intervention to improve spasticity (10, 11).

Extracorporeal shock waves are a group of mechanical pulse waves characterized by high peak pressure (100 MPa), fast pressurization speed (< 10 ns) and short cycle time (10 μs) (6). The treatments can be divided into focused extracorporeal shock waves (12) and radial extracorporeal shock waves (rESW) (13). rESW is a relatively new technique that was first applied in 1999. Extracorporeal shock wave therapy (ESWT) has been shown to be a safe, effective, non-invasive treatment for spasticity in patients with cerebral palsy, epicondylitis and multiple sclerosis (13–16). Several studies have shown that ESWT is effective for treating spasticity in post-stroke patients (17, 18). Dymarek et al. (19, 20) indicated that ESWT could effectively improve limb spasticity in post-stroke patients. In addition, a recent meta-analysis demonstrated the effectiveness of ESWT for spasticity in post-stroke patients (21). However, this was not a meta-analysis of randomized controlled trials (RCTs), and the quality of the included studies was not high. Considering the potential limitations of this earlier meta-analysis, the aim of the current study was to perform a systematic review and meta-analysis of RCTs to assess whether ESWT significantly improves spasticity in post-stroke patients. Furthermore, subgroup analysis was carried out to identify potential moderators or mediators.

Methods

Data sources

A systematic review and meta-analysis was performed according to the guidelines of the Cochrane Handbook for Systematic Reviews (22) and the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) statement (23). PubMed, EMBASE, EBSCO, Web of Science, Cochrane CENTRAL electronic databases were searched systematically from the establishment of the database to December 2017, with the key search terms: “extracorporeal shock wave therapy” and “stroke”. The reference lists of the resulting publications and reviews identified in the initial searches were scanned for further references. The literature search was limited to publications in English.

Selection criteria

The inclusion criteria for selection of studies were: (i) double or single-blind RCTs; (ii) participants with a diagnosis of ischaemic stroke or haemorrhagic stroke who had spasticity of the lower or upper limb with a MAS score >1; (iii) experimental groups treated with ESWT alone or ESWT combined with other interventions; (iv) control groups treated with sham ESWT alone or sham ESWT combined with other interventions; (v) English language publications.

The exclusion criteria were: (i) studies that were not RCTs; (ii) studies in which the participants were children or adolescents (aged less than 18 years); (iii) reviews, case reports/series; (iv) non-English articles; (v) duplicated data; (vi) studies in which relevant outcome indexes were not reported.

 

Data extraction

Two reviewers (WW, WFJ) independently extracted the following data: (i) sample characteristics (sample size, mean age, sex); (ii) clinical features (diagnosis, spasticity at baseline and study end-point); (iii) ESWT therapy protocol (frequency, intensity, site, number of treatment sessions). Study outcome was based on MAS, MTS, H/M ratio and range of motion before and after ESWT.

Risk of bias assessment

The quality of RCTs was assessed independently using the methods recommended by the Cochrane review (24). Two investigators (WW, WFJ) independently assessed the quality of the study, and any disagreements were resolved by discussion and consensus with a third author (QCQ). The quality assessment includes 6 domains: random sequence generation, allocation concealment, blinding of investigators and/or participants, blinding of outcome assessment, degree of incompleteness of outcome data, and selective reporting of study outcomes. Each domain has low, moderate, or high risk.

Statistical analysis

All statistical analyses were conducted using RevMan 5.3 (The Cochrane Collaboration, Software Update, Oxford, UK) and Stata 12.0 (Stata Corp, College Station, TX, USA). All continuous outcomes are expressed as mean differences (standardized and weighted to be determined by available data). Sensitivity analysis was performed to examine the influence of a single study on the overall estimate by omitting 1 study in turn. A p -value <0.05 was considered statistically significant. If p < 0.05 and Ivalue > 50%, the random-effects model was used; otherwise, the fixed effects model was used.[…]

 

Continue —> Journal of Rehabilitation Medicine – Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: A systematic review and meta-analysis of randomized controlled trials – HTML

Fig. 1. Flowchart for study selection. RCT: randomized controlled trial.

, , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: