[ARTICLE] The validity of spatiotemporal gait analysis using dual laser range sensors: a cross-sectional study – Full Text



The spatiotemporal parameters were used for sophisticated gait analysis in widespread clinical use. Recently, a laser range sensor has been proposed as a new device for the spatiotemporal gait measurement. However, measurement using a single laser range sensor can only be used for short-range gait measurements because the device irradiates participants with lasers in a radial manner. For long-range gait measurement, the present study uses a modified method using dual laser range sensors installed at opposite ends of the walking path. The aim of present study was to investigate the concurrent validity of the proposed method for spatiotemporal gait measurement by comparison to a computer-based instrumented walkway system.


Ten healthy participants were enrolled in this study. Ten-meter walking tests at 100, 75, and 50% of the comfortable speed were conducted to determine the concurrent validity of the proposed method compared to instrumented walkway measurements. Frequency distributions of errors for foot-contact (FC) and foot-off (FO) estimated times between the two systems were also calculated to determine the adequacy of estimation of FC and FO from three perspectives: accuracy (smallness of mean error), precision (smallness of variability), and unambiguity (monomodality of histogram). Intra-class correlation coefficient (2,1) was used to determine the concurrent validity of spatiotemporal parameters between the two systems.


The results indicate that the detection times for FC and FO estimated by the proposed method did not differ from those measured by the instrumented walkway reference system. In addition, histogram for FC and FO showed monomodality. Intra-class correlation coefficients of the spatiotemporal parameters (stance time: 0.74; double support time: 0.56; stride time: 0.89; stride length: 0.83; step length: 0.71; swing time: 0.23) were not high enough. The mean errors of all spatiotemporal parameters were small.


These results suggest that the proposed lacks sufficient concurrent validity for spatiotemporal gait measurement. Further improvement of this proposed system seems necessary.


In gait disorder rehabilitation, gait analysis plays an important role in optimizing treatment for each patient [1234]. Conventionally, visual observation of gait analysis is easy and low cost and is commonly used in rehabilitation facilities. However, previous studies report that visual observation gait analysis has low inter-rater and test-retest reliability as well as low criterion concurrent validity in contrast to kinematic analyses using various instruments [45]. For highly accurate measurements with good inter-rater and test-retest reliability, a three-dimensional motion analysis system has been used. Although this system is able to measure whole-body joint motions, it has high costs and is time- and labor-intensive to set up [6].

Spatiotemporal gait measurement is another valuable method to identify gait deviations, make diagnoses, determine appropriate therapy, and monitor patient progress [23]. Frequently, parameters such stance time, swing time, double support time, stride time, stride length, and step length are evaluated [78910]. To calculate these spatiotemporal parameters, accurate detection of two events for switching between the stance and swing phases is essential: foot contact (FC) and foot off (FO). FC is defined as when any point of the foot first contacts and is the starting point of the stance phase. FO is when the sole is raised completely from the floor and is the onset of the swing phase. A measurement system for detection of FC and FO is a computer-based instrumented walkway system with pressure sensors and produces high inter-rater and test-retest reliability [278910]. Although this system has a relatively reasonable price as compared with a three-dimensional motion analysis system, it is still considerably expensive to become widely used. In addition, it occupies a large amount of floor space and greatly limits effective use of the exercise room. While this system is placed on the floor, the place is not able to be used for other purposes even though the exercise room has limited floor space.

Recently, spatiotemporal gait measurement using a laser range scanner has been proposed as easy to install and remove [11121314]. With a laser range scanner, both lower legs are measured using two best-fitting circles whose contours are defined by laser points. Although this method is useful for easy measurement of gait parameters in a clinical setting, the raw contour of the leg is incomplete because the sensor provides only one-sided information [11]. In addition, the number of laser points comprising the spheres decreases with long-range gait measurements because the lasers irradiate participants in a radial manner. Since the radial range decreases with increasing distance from the laser, this causes larger measurement errors.

For eliminating problems in long-range gait measurement, we proposed a method of spatiotemporal gait analysis using dual laser range sensors installed at opposite ends of the walking path. Because the measurement using laser range sensor is quick and easy method, this proposed method has a high degree of usability for clinical practice. However, it is not clear whether the proposed method has concurrent validity, which is defined as evaluation of an instrument against an already validated measure [15], for spatiotemporal gait measurement by comparison to a computer based instrumented walkway system (reference system) that was widely used for criterion-related validity. The aim of present study was to investigate the concurrent validity of the proposed method for spatiotemporal gait measurement by comparison to a reference system.



Ten healthy participants (7 males and 3 females, 20–24 years of age, 154-184 cm in height, 49-70 kg in weight) were enrolled in the present study. All participants have no history of orthopedic, neurophysiologic, and cardiovascular diseases. Informed consent was obtained from each participant before the experiments. The present study was approved by the ethics committee and was conducted according to the Declaration of Helsinki for human experiments.

Experimental procedures

This study used a cross-sectional design to assess the concurrent validity of the proposed method for spatiotemporal gait measurement by comparison to a reference system.

Participants wearing short pants were asked to get on a walking path and walk barefoot along a 12 m straight line including 3.5 m in front of the measured walking path and 3.5 m beyond the end of walking path. Each participant performed one trial at each speed: 100, 75, and 50% of the comfortable speed in a subjective manner. Before measurement, the order of the speed conditions was randomized for each participant. During the gait test, spatiotemporal measurements were carried out simultaneously using both the proposed method and the reference system. The inter-trial interval was set to 2 minutes to prevent fatigue.

Proposed method using laser range sensors

A two-dimensional radial scanning laser range sensor (UTM-30LX, Hokuyo Automatic Co., Ltd., Osaka, Japan) was used (Fig. 1a). The device has a scanning range from − 135° to 135° in steps of 0.25° (total of 1080 data points measuring the distance from the sensor to the target), and one scan is completed in 0.025 s (i.e., the sampling frequency is 40 Hz). In addition, the device exhibits very small test-retest variability and the relative error of a distance (0.1 to 10 m, σ < 0.01 m and ± 0.01 m, white Kent paper, respectively) in the repeated measurements using same laser range sensor unit (i.e. unit testing). Two devices were installed at opposite ends of a five-meter walking path at the level of the average shin height (0.25 m above the floor) [16] (Fig. 1b).


Continue —>  The validity of spatiotemporal gait analysis using dual laser range sensors: a cross-sectional study | Archives of Physiotherapy | Full Text

, , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: