Archive for March, 2019

[MINI REVIEW ARTICLE] Evidence-Based Guidelines and Clinical Pathways in Stroke Rehabilitation—An International Perspective – Full Text

A high societal burden and a considerable increase in stroke-related disability was globally observed over the last 3 decades, and is expected to continue implying a major challenge for societies around the word. Structured multidisciplinary stroke rehabilitation reduces stroke-related disability both in older and younger stroke survivors of either sex and independent of stroke severity. In addition, there is rapidly increasing evidence to support the clinical effectiveness of specific stroke rehabilitation interventions. Evidence-based guidelines help to promote best possible clinical practice. Inherent difficulty for their provision is that it takes enormous efforts to systematically appraise the evidence for guidelines and their regular updates, if they should not be at risk of bias by incomplete evidence selection. A systematic review of the pertaining literature indicates that the currently published stroke rehabilitation guidelines have a national background and focus and represent the health care situations in high-income countries. Societies around the globe would benefit from central evidence sources that systematically appraise the available evidence and make explicit links to practice recommendations. Such knowledge could facilitate a more wide-spread development of valid comprehensive up-to-date evidence-based national guidelines. In addition, the development of genuine international evidence-based stroke rehabilitation guidelines that focus on therapeutic approaches rather than organizational issues, could be used by many to structure regional or local stroke rehabilitation pathways and to develop their resources in a way that will eventually achieve effective stroke rehabilitation. Such international practice recommendations for stroke rehabilitation are currently under development by the World Federation for NeuroRehabilitation (WFNR).

Global Burden of Disease and Stroke-Related Disability

Preventive measures and improved health care led to a decrease of age-standardized stroke mortality rates over the last few decades, while the absolute number of people affected per year by a new stroke, stroke-related deaths, and the number of stroke survivors living in our societies considerably increased leading to a growing burden of disease and related disability (1). From 1990 to 2010 mortality rates decreased in high-income countries (−37%, 95% confidence interval [95% CI] −31 to −41%) and in low- and middle-income countries (−20%, 95% CI −15 to −30%). In the same time stroke-related deaths (absolute number), number of new stroke survivors, number of stroke survivors living in the society, and lost disability-adjusted life-years all increased (on average by +26, +68, +84, +12%, respectively). Similarly, the Global Burden of Disease Study 2015 group reported an increase of ischemic stroke prevalence (number of stroke survivors living in societies) by 21.8% from 2005 to 2015 (i.e., from 20 467.3 to 24 929.0 thousands) and of years lived with disability by 22.0% (i.e., from 2 999.9 to 3 659.9 thousands) during that time (2).

With the demographic developments to be foreseen (population on average growing older in many countries or less dying from communicable diseases) these trends will continue and societies around the globe are well-advised to plan their health-care resources and societal efforts to cope with the increase in neuro-disabilities efficiently.

Effectiveness of Stroke Rehabilitation

Both stroke prevention and effective stroke rehabilitation can decrease the burden of stroke-relating disabilities. This review focuses on options offered by stroke rehabilitation and ways to promote its effectiveness through evidence-based guidelines. At a regional or local level such guidelines can be implemented by clinical pathways, i.e., structured, multidisplinary, and multi-step plans of care that then facilitate effective stroke rehabilitation.

Indeed, dedicated care in multidisciplinary stroke units leads to higher rates of independence with activities of daily living (ADL) and results in less need to receive long-term institutional care after stroke (3). In this Cochrane review, a meta-analysis including 21 randomized controlled trials (RCTs) with a total of 39,994 participants showed a reduced rate of death or institutionalized care (OR 0.78, 95% CI 0.68 to 0.89; P = 0.0003) and death or dependence (OR 0.79, 95% CI 0.68 to 0.90; P = 0.0007) after stroke unit care compared to care in general wards post stroke, without significantly increasing length of stay, and independent of age, sex, or stroke severity.

In addition, it could be shown that specific interventions for stroke rehabilitation promote functional recovery and reduce disability: Both arm-robot therapy and mirror therapy have robustly shown to reduce motor deficits and enhance arm function (45). Similarly, the use of electro-mechanical gait training increases the number of stroke patients that re-gain the ability to walk (6) and the use of treadmill training (with partial body-weight-support) helps to improve walking speed and walking endurance among ambulatory stroke survivors (7).

Thus, contingent to the availability of multidisciplinary specialized stroke services, knowledge about effective rehabilitation therapies (evidence), and both the skill and resources to apply them in clinical practice stroke-related disability can effectively be reduced among stroke survivors world-wide.

Evidence-Based Stroke Rehabilitation, Obstacles for Implementation, and Guidance by Practice Recommendations

Necessary health care structures for stroke rehabilitation are, however, not available in many countries. Stroke service teams integrate aside from specialist doctors and nurses various therapeutic professions such as physiotherapy, occupational therapy, speech and language therapy, (neuro)psychology, and social workers to name just a “core set” of professions.

The density of physiotherapist available in high-income countries is more than 900 per 1 million inhabitants while below 25 in Africa; the corresponding figures for occupational therapists are more than 400 per 1 million inhabitants in high-income countries vs. < 15 per 1 million inhabitants in Africa; and there are basically no speech and language therapists available in most African countries while high-income countries such as USA or Australia have more than 300 per 1 million (8). Lack of resources is prevailing in many other countries to a varying extent (8).

Another issue for best clinical practice is that of knowledge management. The number of published clinical research (clinical trials) directly applicable to clinical practice is rapidly expanding making it more and more difficult, if not impossible for the individual health care professional to keep up-to-date with the existing evidence.

Figure 1 illustrates a steep rise in the number of clinical trial reports on “stroke rehabilitation” listed by PubMed from 1991 to 2017. How should a health care professional be able to search, obtain, critically appraise and synthesize all the evidence that’s becoming available each year?

Figure 1. Stroke rehabilitation—clinical trial publications. The figure shows the number of clinical trials reports per year as listed by PubMed (retrieved from PubMed from https://www.ncbi.nlm.nih.gov/pubmed on 20.11.2018). Note the considerable increase in evidence that became available over the last three decades.

Systematic reviews like Cochrane reviews help to provide a balanced, valid, and mostly up-to-date picture of the available external evidence. They are, however, restricted to only a limited number of health care questions addressed. Thus, while they give a valuable orientation for some topics they are not available for many others. Furthermore, they provide a picture of the evidence, but do refrain from making explicit clinical practice recommendations leaving the reader with a degree of uncertainty how to apply the knowledge.

Evidence-based clinical practice guidelines are meant to provide this guidance. If they are comprehensive, covering a broad range of topics in stroke rehabilitation and are evidence-based they are both valid and clinically useful.[…]

 

Continue —>Frontiers | Evidence-Based Guidelines and Clinical Pathways in Stroke Rehabilitation—An International Perspective | Neurology

, , , ,

Leave a comment

[Abstract] The SonicHand Protocol for Rehabilitation of Hand Motor Function: a validation and feasibility study

Abstract

Musical sonification therapy is a new technique that can reinforce conventional rehabilitation treatments by increasing therapy intensity and engagement through challenging and motivating exercises. Aim of this study is to evaluate the feasibility and validity of the SonicHand protocol, a new training and assessment method for the rehabilitation of hand function. The study was conducted in 15 healthy individuals and 15 stroke patients. The feasibility of implementation of the training protocol was tested in stroke patients only, who practiced a series of exercises concurrently to music sequences produced by specific movements. The assessment protocol evaluated hand motor performance during pronation/supination, wrist horizontal flexion/extension and hand grasp without sonification. From hand position data, 15 quantitative parameters were computed evaluating mean velocity, movement smoothness and angular excursions of hand/fingers. We validated this assessment in terms of its ability to discriminate between patients and healthy subjects, test-retest reliability and concurrent validity with the upper limb section of the Fugl-Meyer scale (FM), the Functional Independence Measure (FIM) and the Box & Block Test (BBT). All patients showed good understanding of the assigned tasks and were able to correctly execute the proposed training protocol, confirming its feasibility. A moderate-to-excellent intraclass correlation coefficient was found in 8/15 computed parameters. Moderate-to-strong correlation was found between the measured parameters and the clinical scales. The SonicHand training protocol is feasible and the assessment protocol showed good to excellent between-group discrimination ability, reliability and concurrent validity, thus enabling the implementation of new personalized and motivating training programs employing sonification for the rehabilitation of hand function.

via The SonicHand Protocol for Rehabilitation of Hand Motor Function: a validation and feasibility study – IEEE Journals & Magazine

, , , , , , , , , ,

Leave a comment

[WEB SITE] Virtual Reality: New Therapy for Neurological Disorders

Virtual Reality: New Therapy for Neurological Disorders

Emerging technology in the form of virtual reality (VR) may provide a new tool to aid treatment for neurological disorders such as autism, schizophrenia and Parkinson’s disease. A recent study suggests that playing games in VR could help individuals with these neurological conditions shift their perceptions of time, which their conditions lead them to perceive differently.

Researchers from the University of Waterloo discovered VR can help improve an individual’s perception of time. “The ability to estimate the passage of time with precision is fundamental to our ability to interact with the world,” says co-author Séamas Weech, a post-doctoral fellow in Kinesiology.

“For some individuals, however, the internal clock is maladjusted, causing timing deficiencies that affect perception and action. Studies like ours help us to understand how these deficiencies might be acquired, and how to recalibrate time perception in the brain.”

Researchers tested 18 females and 13 males with normal vision and no sensory, musculoskeletal or neurological disorders. The researchers used a virtual reality game, Robo Recall, to create a natural setting in which to encourage re-calibration of time perception.

The key manipulation of the study was that the researchers coupled the speed and duration of visual events to the participant’s body movements.

The researchers measured participants’ time perception abilities before and after they were exposed to the dynamic VR task. Some participants also completed non-VR time-perception tasks, such as throwing a ball, to use as a control comparison.

Investigators measured the actual and perceived durations of a moving probe in the time perception tasks. They discovered that the virtual reality manipulation was associated with significant reductions in the participants’ estimates of time, by around 15 percent.

“This study adds valuable proof that the perception of time is flexible, and that VR offers a potentially valuable tool for recalibrating time in the brain,” says Weech. “It offers a compelling application for rehabilitation initiatives that focus on how time perception breaks down in certain populations.”

Weech adds, however, that while the effects were strong during the current study, more research is needed to find out how long the effects last, and whether these signals are observable in the brain.

“For developing clinical applications, we need to know whether these effects are stable for minutes, days, or weeks afterward. A longitudinal study would provide the answer to this question.”

“Virtual reality technology has matured dramatically,” says Michael Barnett-Cowan, neuroscience professor and senior author of the paper.

“VR now convincingly changes our experience of space and time, enabling basic research in perception to inform our understanding of how the brains of normal, injured, aged and diseased populations work and how they can be treated to perform optimally.”

Source: University of Waterloo

 

via Virtual Reality: New Therapy for Neurological Disorders

, ,

Leave a comment

[Abstract] Upper limb tendon/ muscle vibration in persons with subacute and chronic stroke: a systematic review and meta-analysis

 

INTRODUCTION: Results of several recent studies suggest that tendon/muscle vibration treatment may improve motor performance and reduce spasticity in individuals with stroke. We performed a systematic review and meta-analysis to assess the efficacy of tendon/muscle vibration treatment for upper limb functional movements in persons with subacute and chronic stroke.
EVIDENCE ACQUISITION: We searched MEDLINE (Ovid), EMBASE (Ovid), and the Cochrane Central Register of Controlled Trials (Wiley) from inception to September 2017. We included randomized controlled trials comparing upper limb tendon/muscle vibration to sham treatment/rest or conventional interventions in persons with subacute and chronic stroke. Our primary outcome was upper limb functional movement at the end of the treatment period.
EVIDENCE SYNTHESIS: We included eight trials enrolling a total of 211 participants. We found insufficient evidence to support a benefit for upper limb functional movement (standard mean difference -0.32, 95% confidence interval (CI) -0.74 to 0.10, I2 25%, 6 trials, 135 participants). Movement time for reaching tasks significantly decreased after using tendon/muscle vibration (standard mean difference -1.20, 95% CI -2.05 to -0.35, I2 65%, 2 trials, 74 participants). We also found that tendon/muscle vibration was not associated with a significant reduction in spasticity (4 trials).
CONCLUSIONS: Besides shorter movement time for reaching tasks, we did not identify evidence to support clinical improvement in upper limb functional movements after tendon/muscle vibration treatment in persons with subacute and chronic stroke. A small number of trials were identified; therefore, there is a need for larger, higher quality studies and to consider the clinical relevance of performance-based outcome measures that focus on time tocomplete a functional movement such as a reach.

via Upper limb tendon/ muscle vibration in persons with subacute and chronic stroke: a systematic review and meta-analysis – European Journal of Physical and Rehabilitation Medicine 2019 Mar 11 – Minerva Medica – Journals

, , , , , , , , , ,

Leave a comment

[TED Talk] Rebecca Brachman: A new class of drug that could prevent depression and PTSD – TED Talk

Current treatments for depression and PTSD only suppress symptoms, if they work at all. What if we could prevent these diseases from developing altogether? Neuroscientist and TED Fellow Rebecca Brachman shares the story of her team’s accidental discovery of a new class of drug that, for the first time ever, could prevent the negative effects of stress — and boost a person’s ability to recover and grow. Learn how these resilience-enhancing drugs could change the way we treat mental illness.

This talk was presented at an official TED conference, and was featured by our editors on the home page.

via Rebecca Brachman: A new class of drug that could prevent depression and PTSD | TED Talk

, , , , ,

Leave a comment

[WEB SITE] Engineers Develop Ankle Exoskeleton Designed to Be Worn Under Clothes

Published on 

AnkleExoskeleton

Mechanical engineers at Vanderbilt University have developed a lightweight, low-profile ankle exoskeleton that they suggest could be worn under clothes without restricting motion, and does not require additional components such as batteries or actuators carried on the back or waist.

It could be widely used among elderly people, those with impaired lower-leg muscle strength, and workers whose jobs require substantial walking or running, they note, in a study published recently in IEEE Transactions on Neural Systems & Rehabilitation Engineering.

The study builds on a successful and widely cited ankle exoskeleton concept from other researchers in 2015, according to a media release from Vanderbilt University.

“We’ve shown how an unpowered ankle exoskeleton could be redesigned to fit under clothing and inside/under shoes so it more seamlessly integrates into daily life,” says Matt Yandell, a mechanical engineering PhD student and lead author of the study, in the release.

The team invented an unpowered friction clutch mechanism that fits under the foot or shoe and is no thicker than a typical shoe insole. The complete device, which includes a soft shank sleeve and assistive spring, weighs just over 1 pound.

“Our design is lightweight, low profile, quiet, uses no motor or batteries, it is low cost to manufacture, and naturally adapts to different walking speeds to assist the ankle muscles,” states Karl Zelik, assistant professor of mechanical engineering and senior author on the study.

“It could also help reduce fatigue in occupations that involve lots of walking, such as postal and warehouse workers, and soldiers in the field,” he adds.

[Source(s): Vanderbilt University, Science Daily]

 

via Engineers Develop Ankle Exoskeleton Designed to Be Worn Under Clothes – Rehab Managment

, , ,

Leave a comment

[ARTICLE] Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks – Full Text

Abstract

Background

To assist people with disabilities, exoskeletons must be provided with human-robot interfaces and smart algorithms capable to identify the user’s movement intentions. Surface electromyographic (sEMG) signals could be suitable for this purpose, but their applicability in shared control schemes for real-time operation of assistive devices in daily-life activities is limited due to high inter-subject variability, which requires custom calibrations and training. Here, we developed a machine-learning-based algorithm for detecting the user’s motion intention based on electromyographic signals, and discussed its applicability for controlling an upper-limb exoskeleton for people with severe arm disabilities.

Methods

Ten healthy participants, sitting in front of a screen while wearing the exoskeleton, were asked to perform several reaching movements toward three LEDs, presented in a random order. EMG signals from seven upper-limb muscles were recorded. Data were analyzed offline and used to develop an algorithm that identifies the onset of the movement across two different events: moving from a resting position toward the LED (Go-forward), and going back to resting position (Gobackward). A set of subject-independent time-domain EMG features was selected according to information theory and their probability distributions corresponding to rest and movement phases were modeled by means of a two-component Gaussian Mixture Model (GMM). The detection of movement onset by two types of detectors was tested: the first type based on features extracted from single muscles, whereas the second from multiple muscles. Their performances in terms of sensitivity, specificity and latency were assessed for the two events with a leave one-subject out test method.

Results

The onset of movement was detected with a maximum sensitivity of 89.3% for Go-forward and 60.9% for Go-backward events. Best performances in terms of specificity were 96.2 and 94.3% respectively. For both events the algorithm was able to detect the onset before the actual movement, while computational load was compatible with real-time applications.

Conclusions

The detection performances and the low computational load make the proposed algorithm promising for the control of upper-limb exoskeletons in real-time applications. Fast initial calibration makes it also suitable for helping people with severe arm disabilities in performing assisted functional tasks.

Background

Exoskeletons are wearable robots exhibiting a close physical and cognitive interaction with the human users. Over the last years, several exoskeletons have been developed for different purposes, such as augmenting human strength [1], rehabilitating neurologically impaired individuals [2] or assisting people affected by many neuro-musculoskeletal disorders in activities of daily life [3]. For all these applications, the design of cognitive Human-Robot Interfaces (cHRIs) is paramount [4]; indeed, understanding the users’ intention allows to control the device with the final goal to facilitate the execution of the intended movement. The flow of information from the human user to the robot control unit is particularly crucial when exoskeletons are used to assist people with compromised movement capabilities (e.g. post-stroke or spinal-cord-injured people), by amplifying their movements with the goal to restore functions.

In recent years, different approaches have been pursued to design cHRIs, based on invasive and non-invasive approaches. Implantable electrodes, placed directly into the brain or other electrically excitable tissues, record signals directly from the peripheral or central nervous system or muscles, with high resolution and high precision [5]. Non-invasive approaches exploit different bio-signals: some examples are electroencephalography (EEG) [6], electrooculography (EOG) [7], and brain-machine interfaces (BMI) combining the two of them [8910]. In addition, a well-consolidated non-invasive approach is based on surface electromyography (sEMG) [11], which has been successfully used for controlling robotic prostheses and exoskeletons due to their inherent intuitiveness and effectiveness [121314]. Compared to EEG signals, sEMG signals are easy to be acquired and processed and provide effective information on the movement that the person is executing or about to start executing. Despite the above-mentioned advantages, the use of surface EMG signals still has several drawbacks, mainly related to their time-varying nature and the high inter-subject variability, due to differences in the activity level of the muscles and in their activation patterns [1115], which requires custom calibrations and specific training for each user [16]. For these reasons, notwithstanding the intuitiveness of EMG interfaces, it is still under discussion their efficacy and usability in shared human-machine control schemes for upper-limb exoskeletons. Furthermore, the need for significant signal processing can limit the use of EMG signals in on-line applications, for which fast detection is paramount. In this scenario, machine learning methods have been employed to recognize the EMG onset in real time, using different classifiers such as Support Vector Machines, Linear Discriminant Analysis, Hidden Markov Models, Neural Networks, Fuzzy Logic and others [151617]. In this process, a set of features is previously selected in time, frequency, or time-frequency domains [18]. Time-domain features extract information associated to signal amplitude in non-fatiguing contractions; when fatigue effects are predominant, frequency-domain features are more representative; finally, time-frequency domain features better elicit transient effects of muscular contractions. Before feeding the features into the classifier, dimensionality reduction is usually performed, to increase classification performances while reducing complexity [19]. The most common strategies for reduction are: i) feature projection, to map the set of features into a new set with reduced dimensionality (e.g., linear mapping through Principal Component Analysis); ii) feature selection, in which a subset of features is selected according to specific criteria, aimed at optimizing a chosen objective function. All the above-mentioned classification approaches ensure good performance under controlled laboratory conditions. Nevertheless, in order to be used effectively in real-life scenarios, smart algorithms must be developed, which are able to adapt to changes in the environmental conditions and intra-subject variability (e.g. changes of background noise level of the EMG signals), as well as to the inter-subject variability [20].

In this paper, we exploited a cHRI combining sEMG and an upper-limb robotic exoskeleton, to fast detect the users’ motion intention. We implemented offline an unsupervised machine-learning algorithm, using a set of subject-independent time-domain EMG features, selected according to information theory. The probability distributions of rest and movement phases of the set of features were modelled by means of a two-component Gaussian Mixture Model (GMM). The algorithm simulates an online application and implements a sequential method to adapt GMM parameters during the testing phase, in order to deal with changes of background noise levels during the experiment, or fluctuations in EMG peak amplitudes due to muscle adaptation or fatigue. Features were extracted from two different signal sources, namely onset detectors, which were tested offline and their performance in terms of sensitivity (or true positive rate), specificity (or true negative rate) and latency (delay on onset detection) were assessed for two different events, i.e. two transitions from rest to movement phases at different initial conditions. The two events were selected in order to replicate a possible application scenario of the proposed system. Based on the results we obtained, we discussed the applicability of the algorithm to the control of an upper-limb exoskeleton used as an assistive device for people with severe arm disabilities.

Materials and methods

Experimental setup

The experimental setup includes: (i) an upper-limb powered exoskeleton (NESM), (ii) a visual interface, and (iii) a commercial EMG recording system (TeleMyo 2400R, Noraxon Inc., AZ, US).

NESM upper-limb exoskeleton

NESM (Fig. 1a) is a shoulder-elbow powered exoskeleton designed for the mobilization of the right upper limb [2122], developed at The BioRobotics Institute of Scuola Superiore Sant’Anna (Italy). The exoskeleton mechanical structure hangs from a standing structure and comprises four active and eight passive degrees of freedom (DOFs), along with different mechanisms for size regulations to improve comfort and wearability of the device.
Fig. 1

Fig. 1a Experimental setup, comprising NESM, EMG electrodes and the visual interface; b Location of the electrodes for EMG acquisition; c Timing and sequence of action performed by the user during a single trial

[…]

Continue —-> Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , , ,

Leave a comment

[Abstract] Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial

PDF

 

BACKGROUND: When solely mirror therapy is applied for a long period of time, spatial perception and attention to the damaged side may decrease, and the effect of mirror therapy may be limited. To overcome this limitation, it has recently been suggested that the combination of mirror therapy with mirror treatment is effective.
AIM: The aim of this study was to investigate the effects of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors.
DESIGN: A randomized controlled trial.
SETTING: Rehabilitation center.
POPULATION: Thirty stroke survivors were randomly assigned to two groups: the experimental group (n = 15) and the control group (n = 15).
METHODS: Participants of the experimental group received afferent electrical stimulation with mirror therapy, and participants of the control group received sham afferent electrical stimulation with sham mirror therapy for 60 minutes per day, 5 days per week, for 4 weeks. Motor function was measured using a handheld dynamometer and the Modified Ashworth Scale, balance was measured using the Berg Balance Scale, and gait was assessed using the GAITRite at baseline and after 4 weeks.
RESULTS: The experimental group showed significant differences in muscle strength, Modified Ashworth Scale, and Berg Balance Scale results, and velocity, cadence, step length, stride length, and double support time of their gait (p <0.05) in the pre-post intervention comparison. Significant differences between the two groups in muscle strength, Berg Balance Scale, gait velocity, step length, and stride length (p <0.05) were found.
CONCLUSIONS: Mirror therapy with afferent electrical stimulation may effectively improve muscle strength and gait and balance abilities in hemiplegic stroke survivors.
CLINICAL REHABILITATION IMPACT: Afferent electrical stimulation combined with mirror therapy can be used as an effective intervention to improve lower limb motor function, balance, and gait in chronic stroke survivors in clinical settings.

via Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial – European Journal of Physical and Rehabilitation Medicine 2019 Mar 22 – Minerva Medica – Journals

, , , , ,

Leave a comment

[WEB SITE] Depression: Brain stimulation may be a good alternative treatment

A new review, which appears in The BMJ journal, examines the benefits of non-invasive brain stimulation for treating major depression and finds that the technique is a valid alternative to existing treatments.

doctor talking to patient

Doctors should consider brain stimulation as an alternative treatment for people living with severe depression, finds a new review

Over 17 million adults in the United States have had an episode of major depression at one point in their lives.

Some of these people have treatment-resistant depression, which means common prescription drugs do not alleviate the symptoms.

Recent studies have pointed to alternative treatment methods for major depression, such as non-invasive brain stimulation techniques.

For instance, a study that appeared at the end of last year showed that using small electric currents to stimulate a brain area called the orbitofrontal cortex significantly improves the mood of people who did not benefit from conventional antidepressants.

An even more recent trial of a form of brain stimulation called “transcranial alternating current stimulation” (tACS) found that the technique halved depression symptoms in almost 80 percent of the study participants.

Despite such promising results, doctors do not use these techniques widely, as there is not enough data available on their efficacy.

So, a team of researchers led by Julian Mutz at the Institute of Psychiatry, Psychology & Neuroscience at King’s College London, United Kingdom, set out to review some clinical trials that have examined the benefits of non-invasive brain stimulation techniques for people living with depression.

Brain stimulation as additional treatment

Specifically, Mutz and team examined the results of 113 clinical trials. Overall, these trials included 6,750 participants who were 48 years old, on average, and were living with major depressive disorder or bipolar depression.

The original clinical trials involved randomly assigning these participants to 18 treatment interventions or “sham” therapies. The reviewers focussed on the response, or “efficacy” of the treatment, as well as the “discontinuation of treatment for any reason” — or “acceptability” of the therapies. Mutz and colleagues also rated the trials’ risk of bias.

The therapies included in the review were “electroconvulsive therapy (ECT), transcranial magnetic stimulation (repetitive (rTMS), accelerated, priming, deep, and synchronized), theta burst stimulation, magnetic seizure therapy, transcranial direct current stimulation (tDCS), or sham therapy.”

Of these, the treatments that the researchers in the original trial examined most often were high frequency left rTMS and tDCS, which they tested against sham therapy. On the other hand, not many trials covered more recent forms of brain stimulation, such as magnetic seizure therapy and bilateral theta burst stimulation, the review found.

Kutz and his team deemed 34 percent of the trials they reviewed as having a low risk of bias. They considered half of the trials to have an “unclear” risk of bias, and finally, 17 percent to have a high risk of bias. The newer the treatments, the higher was the uncertainty of the trials’ results.

The review found that bitemporal ECT, high dose right unilateral ECT, high frequency left rTMS and tDCS were all significantly more effective than sham therapy both in terms of efficacy and acceptability.

When considering “discontinuation of treatment for any reason,” the researchers found that the participants were not any likelier to discontinue brain stimulation treatments than they were sham therapy. Mutz and colleagues conclude:

These findings provide evidence for the consideration of non-surgical brain stimulation techniques as alternative or add-on treatments for adults with major depressive episodes.”

“These findings also highlight important research priorities in the specialty of brain stimulation, such as the need for further well-designed randomized controlled trials comparing novel treatments, and sham-controlled trials investigating magnetic seizure therapy,” the authors add.

Finally, the researchers also note that their results have clinical implications, “in that they will inform clinicians, patients, and healthcare providers on the relative merits of multiple non-surgical brain stimulation techniques.”

via Depression: Brain stimulation may be a good alternative treatment

, , ,

Leave a comment

[Abstract] Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature From 2009 Through 2014 – Archives of Physical Medicine and Rehabilitation

Abstract

Objective

To conduct an updated, systematic review of the clinical literature, classify studies based on the strength of research design, and derive consensual, evidence-based clinical recommendations for cognitive rehabilitation of people with TBI or stroke.

Data Sources

Online Pubmed and print journal searches identified citations for 250 articles published from 2009 through 2014.

Study Selection

186 articles were selected for inclusion after initial screening. 50 articles were initially excluded (24 healthy, pediatric or other neurologic diagnoses, 10 non-cognitive interventions, 13 descriptive protocols or studies, 3 non-treatment studies). 15 articles were excluded after complete review (1 other neurologic diagnosis, 2 non-treatment studies, 1 qualitative study, 4 descriptive papers, 7 secondary analyses). 121 studies were fully reviewed.

Data Extraction

Articles were reviewed by CRTF members according to specific criteria for study design and quality, and classified as providing Class I, Class II, or Class III evidence. Articles were assigned to 1 of 6 possible categories (based on interventions for attention, vision and neglect, language and communication skills, memory, executive function, or comprehensive-integrated interventions).

Data Synthesis

Of 121 studies, 41 were rated as Class I, 3 as Class Ia, 14 as Class II, and 63 as Class III. Recommendations were derived by CRTF consensus from the relative strengths of the evidence, based on the decision rules applied in prior reviews.

Conclusions

CRTF has now evaluated 491 papers (109 Class I or Ia, 68 Class II, and 314 Class III) and makes 29 recommendations for evidence-based practice of cognitive rehabilitation (9 Practice Standards, 9 Practice Guidelines and 11 Practice Options). Evidence supports Practice Standards for attention deficits after TBI or stroke; visual scanning for neglect after right hemisphere stroke; compensatory strategies for mild memory deficits; language deficits after left hemisphere stroke; social communication deficits after TBI; metacognitive strategy training for deficits in executive functioning; and comprehensive-holistic neuropsychological rehabilitation to reduce cognitive and functional disability after TBI or stroke.

via Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature From 2009 Through 2014 – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

%d bloggers like this: