[Abstract + References] Effectiveness and Superiority of Rehabilitative Treatments in Enhancing Motor Recovery Within 6 Months Poststroke: A Systemic Review

Abstract

Objective

To investigate the effects of various rehabilitative interventions aimed at enhancing poststroke motor recovery by assessing their effectiveness when compared with no treatment or placebo and their superiority when compared with conventional training program (CTP).

Data Source

A literature search was based on 19 Cochrane reviews and 26 other reviews. We also updated the searches in PubMed up to September 30, 2017.

Study Selection

Randomized controlled trials associated with 18 experimented training programs (ETP) were included if they evaluated the effects of the programs on either upper extremity (UE) or lower extremity (LE) motor recovery among adults within 6 months poststroke; included ≥10 participants in each arm; and had an intervention duration of ≥10 consecutive weekdays.

Data Extraction

Four reviewers evaluated the eligibility and quality of literature. Methodological quality was assessed using the PEDro scale.

Data Synthesis

Among the 178 included studies, 129 including 7450 participants were analyzed in this meta-analysis. Six ETPs were significantly effective in enhancing UE motor recovery, with the standard mean differences (SMDs) and 95% confidence intervals outlined as follow: constraint-induced movement therapy (0.82, 0.45-1.19), electrostimulation (ES)-motor (0.42, 0.22-0.63), mirror therapy (0.71, 0.22-1.20), mixed approach (0.21, 0.01-0.41), robot-assisted training (0.51, 0.22-0.80), and task-oriented training (0.57, 0.16-0.99). Six ETPs were significantly effective in enhancing LE motor recovery: body-weight-supported treadmill training (0.27, 0.01-0.52), caregiver-mediated training (0.64, 0.20-1.08), ES-motor (0.55, 0.27-0.83), mixed approach (0.35, 0.15-0.54), mirror therapy (0.56, 0.13-1.00), and virtual reality (0.60, 0.15-1.05). However, compared with CTPs, almost none of the ETPs exhibited significant SMDs for superiority.

Conclusions

Certain experimented interventions were effective in enhancing poststroke motor recovery, but little evidence supported the superiority of experimented interventions over conventional rehabilitation.

References

  1. Langhorne, P., Bernhardt, J., Kwakkel, G. Stroke rehabilitation. Lancet2011;377:1693–1702
  2. Langhorne, P., Coupar, F., Pollock, A. Motor recovery after stroke: a systematic review. Lancet Neurol2009;8:741–754
  3. Veerbeek, J.M., van Wegen, E., van Peppen, R. et al, What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One2014;9e87987
  4. Pollock, A., Farmer, S.E., Brady, M.C. et al, Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev2014;:Cd010820
  5. Lohse, K.R., Lang, C.E., Boyd, L.A. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke2014;45:2053–2058
  6. Cooke, E.V., Mares, K., Clark, A., Tallis, R.C., Pomeroy, V.M. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med2010;8:60
  7. Schneider, E.J., Lannin, N.A., Ada, L., Schmidt, J. Increasing the amount of usual rehabilitation improves activity after stroke: a systematic review. J Physiother2016;62:182–187
  8. Chang, K.H., Chen, H.C., Lin, Y., Chen, S.C., Chiou, H.Y., Liou, T.H. Developing an ICF core set for post-stroke disability assessment and verification in Taiwan: a preliminary study. Disabil Rehabil2012;34:1254–1261
  9. Kwakkel, G., Kollen, B., Twisk, J. Impact of time on improvement of outcome after stroke. Stroke2006;37:2348–2353
  10. Coupar, F., Pollock, A., van Wijck, F., Morris, J., Langhorne, P. Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst Rev2010;:Cd006432
  11. Mehrholz, J., Thomas, S., Elsner, B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev2017;8:Cd002840
  12. Vloothuis, J.D., Mulder, M., Veerbeek, J.M. et al, Caregiver-mediated exercises for improving outcomes after stroke. Cochrane Database Syst Rev2016;12:Cd011058
  13. Coupar, F., Pollock, A., Legg, L.A., Sackley, C., van Vliet, P. Home-based therapy programmes for upper limb functional recovery following stroke. Cochrane Database Syst Rev2012;:Cd006755
  14. Corbetta, D., Sirtori, V., Castellini, G., Moja, L., Gatti, R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev2015;:Cd004433
  15. Woodford, H., Price, C. EMG biofeedback for the recovery of motor function after stroke. Cochrane Database Syst Rev2007;:Cd004585
  16. Pomeroy, V.M., King, L., Pollock, A., Baily-Hallam, A., Langhorne, P. Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst Rev2006;:Cd003241
  17. Barclay-Goddard, R., Stevenson, T., Poluha, W., Moffatt, M.E., Taback, S.P. Force platform feedback for standing balance training after stroke. Cochrane Database Syst Rev2004;:Cd004129
  18. Barclay-Goddard, R.E., Stevenson, T.J., Poluha, W., Thalman, L. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev2011;:Cd005950
  19. Thieme, H., Mehrholz, J., Pohl, M., Behrens, J., Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev2012;:Cd008449
  20. Pollock, A., Baer, G., Campbell, P. et al, Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev2014;:Cd001920
  21. Legg, L.A., Drummond, A.E., Langhorne, P. Occupational therapy for patients with problems in activities of daily living after stroke. Cochrane Database Syst Rev2006;:Cd003585
  22. Pollock, A., Gray, C., Culham, E., Durward, B.R., Langhorne, P. Interventions for improving sit-to-stand ability following stroke. Cochrane Database Syst Rev2014;:Cd007232
  23. Magee, W.L., Clark, I., Tamplin, J., Bradt, J. Music interventions for acquired brain injury. Cochrane Database Syst Rev2017;1:Cd006787
  24. Mehrholz, J., Pohl, M., Platz, T., Kugler, J., Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke.Cochrane Database Syst Rev2015;:Cd006876
  25. Mehrholz, J., Thomas, S., Werner, C., Kugler, J., Pohl, M., Elsner, B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev2017;5:Cd006185
  26. French, B., Thomas, L.H., Coupe, J. et al, Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev2016;11:Cd006073
  27. Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G., Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev2017;11:Cd008349
  28. Kwakkel, G., Veerbeek, J.M., van Wegen, E.E., Wolf, S.L. Constraint-induced movement therapy after stroke. Lancet Neurol2015;14:224–234
  29. Etoom, M., Hawamdeh, M., Hawamdeh, Z. et al, Constraint-induced movement therapy as a rehabilitation intervention for upper extremity in stroke patients: systematic review and meta-analysis. Int J Rehabil Res2016;39:197–210
  30. Plummer, P., Eskes, G., Wallace, S. et al, Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch Phys Med Rehabil2013;94:2565–2574.e6
  31. Wang, X.Q., Pi, Y.L., Chen, B.L. et al, Cognitive motor interference for gait and balance in stroke: a systematic review and meta-analysis. Eur J Neurol2015;22:555–e37
  32. Ghai, S., Ghai, I., Effenberg, A.O. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis. Clin Interv Aging2017;12:557–577
  33. Stanton, R., Ada, L., Dean, C.M., Preston, E. Biofeedback improves performance in lower limb activities more than usual therapy in people following stroke: a systematic review. J Physiother2017;63:11–16
  34. Howlett, O.A., Lannin, N.A., Ada, L., McKinstry, C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil2015;96:934–943
  35. Laufer, Y., Elboim-Gabyzon, M. Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair2011;25:799–809
  36. Kho, A.Y., Liu, K.P., Chung, R.C. Meta-analysis on the effect of mental imagery on motor recovery of the hemiplegic upper extremity function. Aust Occup Ther J2014;61:38–48
  37. Li, R.Q., Li, Z.M., Tan, J.Y., Chen, G.L., Lin, W.Y. Effects of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials. Complement Ther Clin Pract2017;28:75–84
  38. Tong, Y., Pendy, J.T. Jr., Li, W.A. et al, Motor imagery-based rehabilitation: potential neural correlates and clinical application for functional recovery of motor deficits after stroke. Aging Dis2017;8:364–371
  39. Perez-Cruzado, D., Merchan-Baeza, J.A., Gonzalez-Sanchez, M., Cuesta-Vargas, A.I. Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Aust Occup Ther J2017;64:91–112
  40. Deconinck, F.J., Smorenburg, A.R., Benham, A., Ledebt, A., Feltham, M.G., Savelsbergh, G.J.Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabil Neural Repair2015;29:349–361
  41. Resquin, F., Cuesta Gomez, A., Gonzalez-Vargas, J. et al, Hybrid robotic systems for upper limb rehabilitation after stroke: a review. Med Eng Phys2016;38:1279–1288
  42. Veerbeek, J.M., Langbroek-Amersfoort, A.C., van Wegen, E.E., Meskers, C.G., Kwakkel, G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair2017;31:107–121
  43. Bertani, R., Melegari, C., De Cola, M.C., Bramanti, A., Bramanti, P., Calabro, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci2017;38:1561–1569
  44. Zhang, X., Yue, Z. Robotics in Lower-Limb Rehabilitation after Stroke. Behav Neurol2017;2017:3731802
  45. Ada, L., Dorsch, S., Canning, C.G. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother2006;52:241–248
  46. Harris, J.E., Eng, J.J. Strength training improves upper-limb function in individuals with stroke: a meta-analysis. Stroke2010;41:136–140
  47. Yang, X., Wang, P., Liu, C., He, C., Reinhardt, J.D. The effect of whole body vibration on balance, gait performance and mobility in people with stroke: a systematic review and meta-analysis. Clin Rehabil2015;29:627–638
  48. van Delden, A.E., Peper, C.E., Beek, P.J., Kwakkel, G. Unilateral versus bilateral upper limb exercise therapy after stroke: a systematic review. J Rehabil Med2012;44:106–117
  49. Wattchow, K.A., McDonnell, M.N., Hillier, S.L. Rehabilitation interventions for upper limb function in the first four weeks following stroke: a systematic review and meta-analysis of the evidence. Arch Phys Med Rehabil2018;99:367–382
  50. de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother2009;55:129–133
  51. Lang, C.E., Lohse, K.R., Birkenmeier, R.L. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol2015;28:549–555
  52. Marquez-Chin, C., Bagher, S., Zivanovic, V., Popovic, M.R. Functional electrical stimulation therapy for severe hemiplegia: randomized control trial revisited. Can J Occup Ther2017;84:87–97
  53. Kwakkel, G., Winters, C., van Wegen, E.E. et al, Effects of unilateral upper limb training in two distinct prognostic groups early after stroke: the EXPLICIT-stroke randomized clinical trial.Neurorehabil Neural Repair2016;30:804–816
  54. Morris, J.H., van Wijck, F., Joice, S., Ogston, S.A., Cole, I., MacWalter, R.S. A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: a randomized controlled trial. Arch Phys Med Rehabil2008;89:1237–1245
  55. van Delden, A.L., Peper, C.L., Nienhuys, K.N., Zijp, N.I., Beek, P.J., Kwakkel, G. Unilateral versus bilateral upper limb training after stroke. the Upper Limb Training After Stroke clinical trial. Stroke2013;44:2613–2616
  56. Brunner, I.C., Skouen, J.S., Strand, L.I. Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute phase post stroke? A randomized controlled trial. Clin Rehabil2012;26:1078–1086
  57. Ozdemir, F., Birtane, M., Tabatabaei, R., Kokino, S., Ekuklu, G. Comparing stroke rehabilitation outcomes between acute in-patient and non-intense home settings. Arch Phys Med Rehabil2001;82:1375–1379
  58. Ploughman, M., Corbett, D. Can forced-use therapy be clinically applied after stroke? An exploratory randomized controlled trial. Arch Phys Med Rehabil2004;85:1414–1423
  59. Hammer, A.M., Lindmark, B. Effects of forced use on arm function in the subacute phase after stroke: a randomized, clinical pilot study. Phys Ther2009;89:526–539
  60. Boake, C., Noser, E.A., Ro, T. et al, Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabil Neural Repair2007;21:14–24
  61. Dromerick, A.W., Edwards, D.F., Hahn, M., Dromerick, A.W., Edwards, D.F., Hahn, M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?. Stroke2000;31:2984–2988
  62. Dromerick, A.W., Lang, C.E., Birkenmeier, R.L. et al, Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology2009;73:195–201
  63. Liu, K.P., Balderi, K., Leung, T.L. et al, A randomized controlled trial of self-regulated modified constraint-induced movement therapy in sub-acute stroke patients. Eur J Neurol2016;23:1351–1360
  64. Myint, J.M., Yuen, G.F., Yu, T.K. et al, A study of constraint-induced movement therapy in subacute stroke patients in Hong Kong. Clin Rehabil2008;22:112–124
  65. Singh, P., Pradhan, B. Study to assess the effectiveness of modified constraint-induced movement therapy in stroke subjects: a randomized controlled trial. Ann Indian Acad Neurol2013;16:180–184
  66. Stock, R., Thrane, G., Anke, A., Gjone, R., Askim, T. Early versus late-applied constraint-induced movement therapy: a multisite, randomized controlled trial with a 12-month follow-up. Physiother Res Int2018;23
  67. Yu, C., Wang, W., Zhang, Y. et al, The effects of modified constraint-induced movement therapy in acute subcortical cerebral infarction. Front Hum Neurosci2017;11:265
  68. El-Helow, M.R., Zamzam, M.L., Fathalla, M.M. et al, Efficacy of modified constraint-induced movement therapy in acute stroke. Eur J Phys Rehabil Med2015;51:371–379
  69. Thrane, G., Askim, T., Stock, R. et al, Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial. Neurorehabil Neural Repair2015;29:517–525
  70. Seok, H., Lee, S.Y., Kim, J., Yeo, J., Kang, H. Can short-term constraint-induced movement therapy combined with visual biofeedback training improve hemiplegic upper limb function of subacute stroke patients?. Ann Rehabil Med2016;40:998–1009
  71. Armagan, O., Tascioglu, F., Oner, C. Electromyographic biofeedback in the treatment of the hemiplegic hand: a placebo-controlled study. Am J Phys Med Rehabil2003;82:856–861
  72. Crow, J.L., Lincoln, N.B., Nouri, F.M., de Weerdt, W. The effectiveness of EMG biofeedback in the treatment of arm function after stroke. Int Disabil Stud1989;11:155–160
  73. Hemmen, B., Seelen, H.A. Effects of movement imagery and electromyography-triggered feedback on arm hand function in stroke patients in the subacute phase. Clin Rehabil2007;21:587–594
  74. Chae, J., Bethoux, F., Bohinc, T., Dobos, L., Davis, T., Friedl, A. Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke1998;29:975–979
  75. Dorsch, S., Ada, L., Canning, C.G. EMG-triggered electrical stimulation is a feasible intervention to apply to multiple arm muscles in people early after stroke, but does not improve strength and activity more than usual therapy: a randomized feasibility trial. Clin Rehabil2014;28:482–490
  76. Heckmann, J., Mokrusch, T., Krockel, A., Warnke, S., von Stockert, W.T., Neundorfer, B. EMG-triggered electrical muscle stimulation in the treatment of central hemiparesis after a stroke. Eur J Phys Rehabil Med1997;7:138–141
  77. Hsu, S.S., Hu, M.H., Wang, Y.H., Yip, P.K., Chiu, J.W., Hsieh, C.L. Dose-response relation between neuromuscular electrical stimulation and upper-extremity function in patients with stroke. Stroke2010;41:821–824
  78. Lin, Z., Yan, T. Long-term effectiveness of neuromuscular electrical stimulation for promoting motor recovery of the upper extremity after stroke. J Rehabil Med2011;43:506–510
  79. Powell, J.P.A., Granat, M., Cameron, M., Stott, D.J. Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke1999;30:1384–1389
  80. Rosewilliam, S., Malhotra, S., Roffe, C., Jones, P., Pandyan, A.D. Can surface neuromuscular electrical stimulation of the wrist and hand combined with routine therapy facilitate recovery of arm function in patients with stroke?. Arch Phys Med Rehabil2012;93:1715–1721 (.e1)
  81. Shindo, K., Fujiwara, T., Hara, J. et al, Effectiveness of hybrid assistive neuromuscular dynamic stimulation therapy in patients with subacute stroke: a randomized controlled pilot trial. Neurorehabil Neural Repair2011;25:830–837
  82. Wilson, R.D., Page, S.J., Delahanty, M. et al, Upper-limb recovery after stroke: a randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation. Neurorehabil Neural Repair2016;30:978–987
  83. Yozbatiran, N., Donmez, B., Kayak, N., Bozan, O. Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia. Clin Rehabil2006;20:4–11
  84. Conforto, A.B., Ferreiro, K.N., Tomasi, C. et al, Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil Neural Repair2010;24:263–272
  85. Miyasaka, H., Orand, A., Ohnishi, H., Tanino, G., Takeda, K., Sonoda, S. Ability of electrical stimulation therapy to improve the effectiveness of robotic training for paretic upper limbs in patients with stroke. Med Eng Phys2016;38:1172–1175
  86. Ietswaart, M., Johnston, M., Dijkerman, H.C. et al, Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain2011;134:1373–1386
  87. Riccio, I., Iolascon, G., Barillari, M.R., Gimigliano, R., Gimigliano, F. Mental practice is effective in upper limb recovery after stroke: a randomized single-blind cross-over study. Eur J Phys Rehabil Med2010;46:19–25
  88. Liu, H., Song, L.P., Zhang, T. Mental practice combined with physical practice to enhance hand recovery in stroke patients. Behav Neurol2014;2014:876416
  89. Braun, S.M., Beurskens, A.J., Kleynen, M., Oudelaar, B., Schols, J.M., Wade, D.T. A multicenter randomized controlled trial to compare subacute ‘treatment as usual’ with and without mental practice among persons with stroke in Dutch nursing homes. J Am Med Dir Assoc2012;13:85.e1–85.e7
  90. Liu, K.P. Use of mental imagery to improve task generalisation after a stroke. Hong Kong Med J2009;15:37–41
  91. Invernizzi, M., Negrini, S., Carda, S., Lanzotti, L., Cisari, C., Baricich, A. The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: a randomized controlled trial. Eur J Phys Rehabil Med2013;49:311–317
  92. Lee, M.M., Cho, H.Y., Song, C.H. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients. Am J Phys Med Rehabil2012;91:689–696
  93. Gurbuz, N., Afsar, S.I., Ayas, S., Cosar, S.N. Effect of mirror therapy on upper extremity motor function in stroke patients: a randomized controlled trial. J Phys Ther Sci2016;28:2501–2506
  94. Radajewska, A., Opara, J., Bilinski, G. et al, Effectiveness of mirror therapy for subacute stroke in relation to chosen factors. Rehabil Nurs2017;42:223–229
  95. Samuelkamaleshkumar, S., Reethajanetsureka, S., Pauljebaraj, P., Benshamir, B., Padankatti, S.M., David, J.A. Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial. Arch Phys Med Rehabil2014;95:2000–2005
  96. Tyson, S., Wilkinson, J., Thomas, N. et al, Phase II pragmatic randomized controlled trial of patient-led therapies (mirror therapy and lower-limb exercises) during inpatient stroke rehabilitation.Neurorehabil Neural Repair2015;29:818–826
  97. Thieme, H., Bayn, M., Wurg, M., Zange, C., Pohl, M., Behrens, J. Mirror therapy for patients with severe arm paresis after stroke – a randomized controlled trial. Clin Rehabil2013;27:314–324
  98. Dohle, C., Pullen, J., Nakaten, A., Kust, J., Rietz, C., Karbe, H. Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair2009;23:209–217
  99. Kim, H., Lee, G., Song, C. Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients. J Stroke Cerebrovasc Dis2014;23:655–661
  100. Schick, T., Schlake, H.P., Kallusky, J. et al, Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis. Restor Neurol Neurosci2017;
  101. Lim, K.B., Lee, H.J., Yoo, J., Yun, H.J., Hwang, H.J. Efficacy of mirror therapy containing functional tasks in poststroke patients. Ann Rehabil Med2016;40:629–636
  102. Donaldson, C., Tallis, R., Miller, S., Sunderland, A., Lemon, R., Pomeroy, V. Effects of conventional physical therapy and functional strength training on upper limb motor recovery after stroke: a randomized phase II study. Neurorehabil Neural Repair2009;23:389–397
  103. Han, C., Wang, Q., Meng, P.P., Qi, M.Z. Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clin Rehabil2013;27:75–81
  104. Harris, J.E., Eng, J.J., Miller, W.C., Dawson, A.S. A self-administered Graded Repetitive Arm Supplementary Program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial. Stroke2009;40:2123–2128
  105. Kong, K.H., Loh, Y.J., Thia, E. et al, Efficacy of a virtual reality commercial gaming device in upper limb recovery after stroke: a randomized, controlled study. Top Stroke Rehabil2016;23:333–340
  106. Kwakkel, G., Wagenaar, R.C., Twisk, J.W., Lankhorst, G.J., Koetsier, J.C. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet1999;354:191–196
  107. Glasgow Augmented Physiotherapy Study (GAPS) Group. Can augmented physiotherapy input enhance recovery of mobility after stroke? A randomized controlled trial. Clin Rehabil2004;18:529–537
  108. Yelnik, A.P., Quintaine, V., Andriantsifanetra, C. et al, AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial. Stroke2017;48:400–405
  109. Platz, T., van Kaick, S., Mehrholz, J., Leidner, O., Eickhof, C., Pohl, M. Best conventional therapy versus modular impairment-oriented training for arm paresis after stroke: a single-blind, multicenter randomized controlled trial. Neurorehabil Neural Repair2009;23:706–716
  110. Schneider, S., Schonle, P.W., Altenmuller, E., Munte, T.F. Using musical instruments to improve motor skill recovery following a stroke. J Neurol2007;254:1339–1346
  111. Schneider, S., Münte, T., Rodriguez-Fornells, A., Sailer, M., Altenmuller, E. Music-supported training is more efficient than functional motor training for recovery of fine motor skills in stroke patients.Music Perception2010;27:271–280
  112. Jun, E.M., Roh, Y.H., Kim, M.J. The effect of music-movement therapy on physical and psychological states of stroke patients. J Clin Nurs2013;22:22–31
  113. Masiero, S., Celia, A., Rosati, G., Armani, M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil2007;88:142–149
  114. Fasoli, S.E., Krebs, H.I., Ferraro, M., Hogan, N., Volpe, B.T. Does shorter rehabilitation limit potential recovery poststroke?. Neurorehabil Neural Repair2004;18:88–94
  115. Masiero, S., Celia, A., Armani, M., Rosati, G. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging Clin Exp Res2006;18:531–535
  116. Aisen, M.L., Krebs, H.I., Hogan, N., McDowell, F., Volpe, B.T. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol1997;54:443–446
  117. Volpe, B., Krebs, H., Hogan, N., Edelstein, L., Diels, C., Aisen, M. A novel approach to stroke rehabilitation robot-aided sensorimotor stimulation. Neurology2000;54:1938–1944
  118. Burgar, C.G., Lum, P.S., Scremin, A.M. et al, Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J Rehabil Res Dev2011;48:445–458
  119. Hesse, S., Heß, A., Werner, C.C., Kabbert, N., Buschfort, R. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: a randomized controlled trial. Clin Rehabil2014;28:637–647
  120. Hsieh, Y.W., Wu, C.Y., Wang, W.E. et al, Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: a pilot randomized controlled trial. Clin Rehabil2017;31:225–233
  121. Lee, K.W., Kim, S.B., Lee, J.H., Lee, S.J., Yoo, S.W. Effect of upper extremity robot-assisted exercise on spasticity in stroke patients. Ann Rehabil Med2016;40:961–971
  122. Masiero, S., Armani, M., Rosati, G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabil Res Dev2011;48:355–366
  123. Rabadi, M., Galgano, M., Lynch, D., Akerman, M., Lesser, M., Volpe, B. A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial. Clin Rehabil2008;22:1071–1082
  124. Sale, P., Franceschini, M., Mazzoleni, S., Palma, E., Agosti, M., Posteraro, F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J Neuroeng Rehabil2014;11:104
  125. Takahashi, K., Domen, K., Sakamoto, T. et al, Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia: an exploratory randomized trial. Stroke2016;47:1385–1388
  126. Wolf, S.L., Sahu, K., Bay, R.C. et al, The HAAPI (Home Arm Assistance Progression Initiative) Trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair2015;29:958–968
  127. Qian, Q., Hu, X., Lai, Q., Ng, S.C., Zheng, Y., Poon, W. Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Front Neurol2017;8:447
  128. Winstein, C.J., Rose, D.K., Tan, S.M., Lewthwaite, R., Chui, H.C., Azen, S.P. A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Arch Phys Med Rehabil2004;85:620–628
  129. Blennerhassett, J., Dite, W. Additional task-related practice improves mobility and upper limb function early after stroke: a randomised controlled trial. Aust J Physiother2004;50:219–224
  130. Hubbard, I.J., Carey, L.M., Budd, T.W. et al, A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation. Neurorehabil Neural Repair2015;29:703–713
  131. Arya, K., Verma, R., Garg, R., Sharma, V., Agarwal, M., Aggarwal, G. Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial. Top Stroke Rehabil2012;19:193–211
  132. Desrosiers, J., Bourbonnais, D., Corriveau, H., Gosselin, S., Bravo, G. Effectiveness of unilateral and symmetrical bilateral task training for arm during the subacute phase after stroke: a randomized controlled trial. Clin Rehabil2005;19:581–593
  133. Gelber, D.A., Josefczyk, P.B., Herrman, D., Good, D.C., Verhulst, S.J. Comparison of two therapy approaches in the rehabilitation of the pure motor hemiparetic stroke patient. Neurorehabil Neural Repair1995;9:191–196
  134. Langhammer, B., Stanghelle, J.K. Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study. Clin Rehabil2000;14:361–369
  135. van Vliet, P.M., Lincoln, N.B., Foxall, A. Comparison of Bobath based and movement science based treatment for stroke: a randomised controlled trial. J Neurol Neurosurg Psychiatry2005;76:503–508
  136. Winstein, C.J., Wolf, S.L., Dromerick, A.W. et al, Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA2016;315:571–581
  137. Kwon, J.-S., Park, M.-J., Yoon, I.-J., Park, S.-H. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial.NeuroRehabilitation2012;31:379–385
  138. Bower, K.J., Clark, R.A., McGinley, J.L., Martin, C.L., Miller, K.J. Clinical feasibility of the Nintendo Wii for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clin Rehabil2014;28:912–923
  139. Choi, J.H., Han, E.Y., Kim, B.R. et al, Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Ann Rehabil Med2014;38:485–493
  140. Adie, K., Schofield, C., Berrow, M. et al, Does the use of Nintendo Wii Sports(TM) improve arm function? Trial of Wii(TM) in Stroke: a randomized controlled trial and economics analysis. Clin Rehabil2017;31:173–185
  141. Saposnik, G., Cohen, L.G., Mamdani, M. et al, Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.Lancet Neurol2016;15:1019–1027
  142. Saposnik, G., Teasell, R., Mamdani, M. et al, Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke2010;41:1477–1484
  143. Prange, G.B., Kottink, A.I., Buurke, J.H. et al, The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial.Neurorehabil Neural Repair2015;29:174–182
  144. Duncan, P.W., Sullivan, K.J., Behrman, A.L. et al, Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med2011;364:2026–2036
  145. Mackay-Lyons, M., McDonald, A., Matheson, J., Eskes, G., Klus, M.A. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair2013;27:644–653
  146. Mao, Y.R., Lo, W.L., Lin, Q. et al, The effect of body weight support treadmill training on gait recovery, proximal lower limb motor pattern, and balance in patients with subacute stroke. Biomed Res Int2015;2015:175719
  147. Nilsson, L., Carlsson, J., Danielsson, A. et al, Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil2001;15:515–527
  148. Galvin, R., Cusack, T., O’Grady, E., Murphy, T.B., Stokes, E. Family-mediated exercise intervention (FAME): evaluation of a novel form of exercise delivery after stroke. Stroke2011;42:681–686
  149. van den Berg, M., Crotty, M.P., Liu, E., Killington, M., Kwakkel, G.P., van Wegen, E. Early supported discharge by caregiver-mediated exercises and e-health support after stroke: a proof-of-concept trial. Stroke2016;47:1885–1892
  150. Choi, J.H., Kim, B.R., Han, E.Y., Kim, S.M. The effect of dual-task training on balance and cognition in patients with subacute post-stroke. Ann Rehabil Med2015;39:81–90
  151. Wang, Y.H., Meng, F., Zhang, Y., Xu, M.Y., Yue, S.W. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study. Clin Rehabil2016;30:577–586
  152. Winchester, P., Montgomery, J., Bowman, B., Hislop, H. Effects of feedback stimulation training and cyclical electrical stimulation on knee extension in hemiparetic patients. Phys Ther1983;63:1096–1103
  153. Yan, T., Hui-Chan, C.W., Li, L.S. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke2005;36:80–85
  154. Ambrosini, E., Ferrante, S., Pedrocchi, A., Ferrigno, G., Molteni, F. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial. Stroke2011;42:1068–1073
  155. Ferrante, S., Pedrocchi, A., Ferrigno, G., Molteni, F. Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner. Eur J Phys Rehabil Med2008;44:159–167
  156. Yavuzer, G., Geler-Kulcu, D., Sonel-Tur, B., Kutlay, S., Ergin, S., Stam, H.J. Neuromuscular electric stimulation effect on lower-extremity motor recovery and gait kinematics of patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil2006;87:536–540
  157. Lee, H.J., Cho, K.H., Lee, W.H. The effects of body weight support treadmill training with power-assisted functional electrical stimulation on functional movement and gait in stroke patients. Am J Phys Med Rehabil2013;92:1051–1059
  158. Bauer, P., Krewer, C., Golaszewski, S., Koenig, E., Muller, F. Functional electrical stimulation-assisted active cycling–therapeutic effects in patients with hemiparesis from 7 days to 6 months after stroke: a randomized controlled pilot study. Arch Phys Med Rehabil2015;96:188–196
  159. Macdonell, R.A., Triggs, W.J., Leikauskas, J. et al, Functional electrical stimulation to the affected lower limb and recovery after cerebral infarction. J Stroke Cerebrovasc Dis1994;4:155–160
  160. Morone, G., Fusco, A., Di Capua, P., Coiro, P., Pratesi, L. Walking training with foot drop stimulator controlled by a tilt sensor to improve walking outcomes: a randomized controlled pilot study in patients with stroke in subacute phase. Stroke Res Treat2012;2012:523564
  161. Ng, M.F., Tong, R.K., Li, L.S. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation. Stroke2008;39:154–160
  162. Xu, Q., Guo, F., Salem, H.M.A., Chen, H., Huang, X. Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study. Clin Rehabil2017;31:1583–1591
  163. Yan, T., Hui-Chan, C.W. Transcutaneous electrical stimulation on acupuncture points improves muscle function in subjects after acute stroke: a randomized controlled trial. J Rehabil Med2009;41:312–316
  164. Yavuzer, G., Oken, O., Atay, M.B., Stam, H.J. Effect of sensory-amplitude electric stimulation on motor recovery and gait kinematics after stroke: a randomized controlled study. Arch Phys Med Rehabil2007;88:710–714
  165. Cooke, E.V., Tallis, R.C., Clark, A., Pomeroy, V.M. Efficacy of functional strength training on restoration of lower-limb motor function early after stroke: phase I randomized controlled trial.Neurorehabil Neural Repair2010;24:88–96
  166. Kerr, A., Clark, A., Cooke, E.V., Rowe, P., Pomeroy, V.M. Functional strength training and movement performance therapy produce analogous improvement in sit-to-stand early after stroke: early-phase randomised controlled trial. Physiotherapy2017;103:259–265
  167. Wang, R., Chen, H., Chen, C., Yang, Y. Efficacy of Bobath versus orthopaedic approach on impairment and function at different motor recovery stages after stroke: a randomized controlled study. Clin Rehabil2005;19:155–164
  168. Mohan, U., Babu, S.K., Kumar, K.V., Suresh, B.V., Misri, Z.K., Chakrapani, M. Effectiveness of mirror therapy on lower extremity motor recovery, balance and mobility in patients with acute stroke: a randomized sham-controlled pilot trial. Ann Indian Acad Neurol2013;16:634–639
  169. Sutbeyaz, S., Yavuzer, G., Sezer, N., Koseoglu, B.F. Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial. Arch Phys Med Rehabil2007;88:555–559
  170. Forrester, L.W., Roy, A., Krywonis, A., Kehs, G., Krebs, H.I., Macko, R.F. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study. Neurorehabil Neural Repair2014;28:678–687
  171. Chang, W.H., Kim, M.S., Huh, J.P., Lee, P.K., Kim, Y.-H. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: a randomized controlled study. Neurorehabil Neural Repair2012;26:318–324
  172. Han, E.Y., Im, S.H., Kim, B.R., Seo, M.J., Kim, M.O. Robot-assisted gait training improves brachial–ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: randomized controlled trial. Medicine2016;95
  173. Morone, G., Bragoni, M., Iosa, M. et al, Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair2011;25:636–644
  174. Pohl, M., Werner, C., Holzgraefe, M. et al, Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil2007;21:17–27
  175. van Nunen, M.P., Gerrits, K.H., Konijnenbelt, M., Janssen, T.W., de Haan, A. Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol2015;10:141–148
  176. Watanabe, H., Tanaka, N., Inuta, T., Saitou, H., Yanagi, H. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil2014;95:2006–2012
  177. Kim, C.Y., Lee, J.S., Kim, H.D., Kim, J., Lee, I.H. Lower extremity muscle activation and function in progressive task-oriented training on the supplementary tilt table during stepping-like movements in patients with acute stroke hemiparesis. J Electromyogr Kinesiol2015;25:522–530
  178. McEwen, D., Taillon-Hobson, A., Bilodeau, M., Sveistrup, H., Finestone, H. Virtual reality exercise improves mobility after stroke an inpatient randomized controlled trial. Stroke2014;45:1853–1855
  179. Guo, C., Mi, X., Liu, S. et al, Whole body vibration training improves walking performance of stroke patients with knee hyperextension: a randomized controlled pilot study. CNS Neurol Disord Drug Targets2015;14:1110–1115
  180. van Nes, I.J., Latour, H., Schils, F., Meijer, R., van Kuijk, A., Geurts, A.C. Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: a randomized, controlled trial. Stroke2006;37:2331–2335

via Effectiveness and Superiority of Rehabilitative Treatments in Enhancing Motor Recovery Within 6 Months Poststroke: A Systemic Review – Archives of Physical Medicine and Rehabilitation

, , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: