[ARTICLE] Novel gait training alters functional brain connectivity during walking in chronic stroke patients: a randomized controlled pilot trial – Full Text

Abstract

Background

A recent study has demonstrated that a turning-based treadmill program yields greater improvements in gait speed and temporal symmetry than regular treadmill training in chronic stroke patients. However, it remains unknown how this novel and challenging gait training shapes the cortico-cortical network and cortico-spinal network during walking in chronic stroke patients. The purpose of this study was to examine how a novel type of gait training, which is an unfamiliar but effective task for people with chronic stroke, enhances brain reorganization.

Methods

Subjects in the experimental and control groups received 30 min of turning-based treadmill training and regular treadmill training, respectively. Cortico-cortical connectivity and cortico-muscular connectivity during walking and gait performance were assessed before and after completing the 12-session training.

Results

Eighteen subjects (n = 9 per group) with a mean age of 52.5 ± 9.7 years and an overground walking speed of 0.61 ± 0.26 m/s consented and participated in this study. There were significant group by time interactions for gait speed, temporal gait symmetry, and cortico-cortical connectivity as well as cortico-muscular connectivity in walk-related frequency (24–40 Hz) over the frontal-central-parietal areas. Compared with the regular treadmill training, the turning-based treadmill training resulted in greater improvements in these measures. Moreover, the increases in cortico-cortical connectivity and cortico-muscular connectivity while walking were associated with improvements in temporal gait symmetry.

Conclusions

Our findings suggest this novel turning-based treadmill training is effective for enhancing brain functional reorganization underlying cortico-cortical and corticomuscular mechanisms and thus may result in gait improvement in people with chronic stroke.

Introduction

A recent study suggested that chronic stroke patients maintain the capacity to increase synchronization of neural activity between different brain regions as measured by EEG connectivity. These changes of functional connectivity in the motor cortex through neurofeedback correlate with improvements in motor performance [1]. Previously, we demonstrated that a novel specific training, the turning-based treadmill program, yielded greater improvements in gait speed and temporal symmetry than regular treadmill training for people with chronic stroke [2]. We presumed the turning-based treadmill training, which is a challenging and unfamiliar training task for chronic stroke patients, may facilitate brain reorganization and behavioral recovery [3]. Thus, we sought to understand how such novel gait training promotes brain reorganization in this study.

An EEG-based method has the advantage of real-time recording during walking due to the relative ease of data acquisition. As indicated by the authors of the first study to use an EEG signal recorded during walking, the power increases within numerous frequency bands (3–150 Hz) in the sensorimotor cortex and is more pronounced during the end of the stance phase of walking [4]. Source localization EEG analysis revealed the importance of the primary somatosensory, somatosensory association, primary motor and cingulate cortex in gait control [5]. Focal lesions due to stroke may not only affect the functional connectivity of cortical areas [6] but also impede the neural transmission of descending motor pathways [7]. Based on spectral analysis, the direct relationship of cortical activities with peripheral movements is still unknown. Accordingly, an analysis of EEG-EMG coherence recorded during treadmill walking was done by Petersen et al. [8], who demonstrated that cortical activity in the primary motor cortex within the gamma band (24–40 Hz) was transmitted via the corticospinal tract to the leg muscles during the swing phase of walking. In addition, a recent study confirmed the strong correlation between kinematic errors of the lower extremities and fronto-centroparietal connectivity during gait training and post-training in healthy subjects [9]. However, it remains unknown how novel and challenging gait training shapes the cortico-cortical network and cortico-spinal network during walking in individuals with chronic stroke. Therefore, the aims of the current study were to explore the effects of the turning-based treadmill training, a novel gait training program, on cortico-cortical connectivity and corticomuscular connectivity and to investigate the relationship between connectivity changes and gait performance in chronic stroke patients.[…]

 

Continue —> Novel gait training alters functional brain connectivity during walking in chronic stroke patients: a randomized controlled pilot trial | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: