[ARTICLE] Feasibility and clinical experience of implementing a myoelectric upper limb orthosis in the rehabilitation of chronic stroke patients: A clinical case series report – Full Text

Abstract

Individuals with stroke are often left with persistent upper limb dysfunction, even after treatment with traditional rehabilitation methods. The purpose of this retrospective study is to demonstrate feasibility of the implementation of an upper limb myoelectric orthosis for the treatment of persistent moderate upper limb impairment following stroke (>6 months). Methods: Nine patients (>6 months post stroke) participated in treatment at an outpatient Occupational Therapy department utilizing the MyoPro myoelectric orthotic device. Group therapy was provided at a frequency of 1–2 sessions per week (60–90 minutes per session). Patients were instructed to perform training with the device at home on non-therapy days and to continue with use of the device after completion of the group training period. Outcome measures included Fugl-Meyer Upper Limb Assessment (FM) and modified Ashworth Scale (MAS). Results: Patients demonstrated clinically important and statistically significant improvement of 9.0±4.8 points (p = 0.0005) on a measure of motor control impairment (FM) during participation in group training. It was feasible to administer the training in a group setting with the MyoPro, using a 1:4 ratio (therapist to patients). Muscle tone improved for muscles with MAS >1.5 at baseline. Discussion: Myoelectric orthosis use is feasible in a group clinic setting and in home-use structure for chronic stroke survivors. Clinically important motor control gains were observed on FM in 7 of 9 patients who participated in training.

Fig 1

Introduction

Stroke is a leading cause of long term disability in the United States[1]. Traditional rehabilitation does not restore normal motor control for all stroke survivors, and upwards of 50% live with persistent upper limb dysfunction[2]. This leads to diminished functional independence and quality of life[3]. Motor learning-based interventions have shown promise[4]. However in today’s health care milieu, for those with chronic motor deficits, provision of the intensive rehabilitation necessary to provide motor learning-based interventions is challenging. Therefore, new treatment methods are needed under these constraints.

An emerging technology that warrants further investigation is myoelectric control which harnesses the user’s EMG signal to power a custom fabricated orthotic device. When the user activates a target muscle, the EMG signal from that muscle signals a motor to produce a desired movement. Myoelectric control has been studied in different populations[5], but its study in stroke has been limited. One commercially available upper limb myoelectric device is the MyoPro motion-G (Cambridge, MA). The MyoPro motion-G provides assistance to the weak upper limb and allows the patient to perform movement they otherwise are unable to complete. Preliminary evidence suggests it may be effective in improving motor control[69] and one study showed improvement in self-reported function and perception of recovery[10]. This device has been utilized in the occupational therapy (OT) clinic at our medical center for 5 years. The purpose of this study is to demonstrate feasibility of administering treatment with the MyoPro using a group therapy design in a cohort of patients with chronic stroke whose progress with standard OT had plateaued.[…]

Continue —> Feasibility and clinical experience of implementing a myoelectric upper limb orthosis in the rehabilitation of chronic stroke patients: A clinical case series report

, , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: