[ARTICLE] A Systematic Review of Usability and Accessibility in Tele-Rehabilitation Systems – Full Text


The appropriate development of tele-rehabilitation platforms requires the involvement and iterative assessments of potential users and experts in usability. Usability consists of measuring the degree to which an interactive system can be used by specified final users to achieve quantified objectives with effectiveness, efficiency, and satisfaction in a quantified context of use. Usability studies need to be complemented by an accessibility assessment. Accessibility indicates how easy it is for a person to access any content, regardless of their physical, educational, social, psychological, or cultural conditions. This chapter intends to conduct a systematic review of the literature on usability and accessibility in tele-rehabilitation platforms carried out through the PRISMA method. To do so, we searched in ACM, IEEE Xplore, Google Scholar, and Scopus databases for the most relevant papers of the last decade. The main result of the usability shows that the user experience predominates over the heuristic studies, and the usability questionnaire most used in user experience is the SUS. The main result of the accessibility reveals that the topic is only marginally studied. In addition, it is observed that Web applications do not apply the physical and cognitive accessibility standards defined by the WCAG 2.1.

1. Introduction

Innovation and technological advances involve the offering of valuable products and services to improve the quality of life of citizens. In recent decades, the domain of telemedicine has reported advances in the control, monitoring and evaluation of various clinical conditions [1]. In the field of rehabilitation, numerous studies and state-of-the-arts from informatics perspective [2] and different areas of application [34], show the effectiveness and advantages of the use of remote rehabilitation (or tele-rehabilitation) [56]. Tele-rehabilitation aims to reduce the time and costs of offering rehabilitation services. The main objective is to improve the quality of life of patients [7]. Tele-rehabilitation cannot replace traditional neurological rehabilitation [8]. It is considered as a partial replacement of face-to-face physical rehabilitation [9]. Tele-rehabilitation uses mainly two groups of technologies: (1) wearable devices and (2) vision-based systems based on depth cameras and intelligent algorithms [10]. In [5], the authors describe and analyze some characteristics and typical requirements tele-rehabilitation systems.

Design and conception of tele-rehabilitations platforms that do not consider guidelines, metrics, patterns, principles, or practice success factors can affect the access to the service, the effectiveness, quality, and usefulness. It can cause problems of confusion, error, stress, and abandonment of the rehabilitation plan. Therefore, guaranteeing the correct use of these applications implies to incorporate different studies of usability in the life cycle of the interactive system. For this reason, aspects of human factors engineering in tele-rehabilitation systems have been studied with the aim of providing accessible, efficient, usable and understandable systems [1112].

User-centered agile development (UCD) approaches allows developers to specify and design the set of interfaces of any interactive system in a flexible and effective way [1314]. The agile development life cycle centered on user experience (UX-ADLC) allows iteratively evaluating system interfaces based on the results of the previous iteration. The evaluation also includes the errors and usability problems encountered [15]. Thus, usability studies are an essential aspect of technology development [16]. This is the reason why designers need to meet usability and user experience objectives while adhering to agile principles of software development. Formative and summative usability tests are methods of evaluating software products widely adopted in user-centered design (UCD) [15] and agile UX development lifecycle. Both approaches are frequently used in the development of software applications. Rapid formative usability should be carried out so as to fulfill UX goals while satisfying end users’ needs. Formative usability is used as an iterative test-and-refine method performed in the early steps of a design process, in order to detect and fix usability problems [15]. Summative usability allows for assuring, in later phases of the design, the quality of the user experience (UX) for a software product in development. The focus is on short work periods (or iterations) where usability tests (formative and summative) must be contemplated. This means that quick formative usability tests should be carried out to fulfill UX goals [17].

The ISO 9241-11 standard [18] is a framework for understanding and applying the concept of usability to situations in which people use interactive systems and other types of systems (including built environments), products (including industrial and consumer products) and services (including technical and personal services). Likewise, the usability standard ISO 9241-11 facilitates the measurement of the use of a product with the aim of achieving specific objectives with effectiveness, efficiency and satisfaction in a context of specific use [18].

Usability can be studied through software evaluation methods widely accepted in user centered design (UCD) [15]. It can be formative or summative [8]. Formative usability consists of a set of iterative tests carried out in the early stages of the design process. The aim of the tests is to refine and improve the software product, as well as to detect and solve potential usability problems. As a complement, the summative usability allows to obtain an evaluation of the user experience (UX) for a software product in development. Formative usability facilitates decision making during the design and development of the product, while summative usability is useful when studying user experience (UX).

Tullis and Stetson [19] evaluated the effectiveness of the most used questionnaires to measure the summative usability. The authors found that the System Usability Scale (SUS) [20] and the IBM Computer System Usability Questionnaire (CSUQ) [21] are the most effective. SUS provides a quick way for measuring the usability through user experience. It consists of a 10-item questionnaire with 5-likert scale range from “Strong Agree” to “Strongly Disagree.” The CSUQ focuses on three main aspects: (1) the utility, which refers to the opinion of users regarding the ease of use, the ease of learning, the speed to perform the operations, the efficiency in completing tasks and subjective feeling; (2) the quality of the information which studies the subjectivity of the user regarding the management of system errors, the clarity of the information and the intelligibility; and finally, (3) the quality of the interface which measures the affective component of the user’s attitude in the use of the system.

Large part of the tasks in the tele-rehabilitation systems are carried out by patients who require to treat a temporary disability. Considering the special needs of these users, usability evaluations alone cannot guarantee an appropriate design of the system. On the contrary, accessibility studies can provide the mechanisms to offer the same means of use to all users of any interactive system. A study combining usability and accessibility was presented in [22]. The study analyzes how remote and/or video monitoring technologies affect the accessibility, effectiveness, quality and usefulness of the services offered by tele-rehabilitation systems. To do this, the authors provide an overview of the fundamentals necessary for the analysis of usability, in addition to analyzing the strengths and limitations of various tele-rehabilitation technologies, considering how technologies interact with the clinical needs of end users such as accessibility, effectiveness, quality and utility of the service [22].

For many people, the Web is a fundamental part of everyday life. Therefore, a fundamental aspect to ensure the inclusivity of a Website is its accessibility. For example, people who cannot use their arms to write on their computer can use a mouth pencil [23]. Or someone who cannot listen well can use subtitles to understand a video. Also, a person who has a low vision can use a screen reader to listen what is written on the screen [24]. Therefore, Web accessibility means that people with disabilities can use the Web without any type of barriers [24]. There are several standards related to accessibility that provide guidelines and recommendations [25]. Some of the most important, according to the International Organization for Standardization (ISO), are the following ones:

  • ISO 9241: covers ergonomics of human-computer interaction.

  • ISO 14915 (software ergonomics for multimedia user interfaces): multimedia controls and navigation structure.

  • ISO CD 9241-151 (software ergonomics for World Wide Web user interfaces): designs of Web user interfaces.

  • ISO TS 16071 (guidance on accessibility for human-computer interface): recommendations for the design of systems and software applications that allows a greater accessibility to computer systems for users with disabilities.

  • ISO CD 9241-20: accessibility guideline for information communication, equipment and services.

The Web Accessibility Initiative (WAI) [26] from the World Wide Web Consortium (W3C) [27] develops Web Content Accessibility Guidelines (WCAG) [28] 2.0 (at present 2.1) that covers a wide range of recommendations for making Web contents more accessible. These guidelines were considered a standard in 2012, the ISO/IEC 40500. Complementary to these guidelines are the W3C User Agent Accessibility guidelines [29] (UAAG) and Authoring tool Accessibility guidelines [30] (ATAG), which addresses the current technological capabilities to modify the presentation based on the device capabilities and the preferences of the user.

The World Wide Web Consortium (W3C) provides international standards to make the Web as accessible as possible. It comprises the Web 2.0 Content Accessibility Guidelines (WCAG 2.0) [31], also known as the ISO 40500 [32], which are adapted to the European Standard called EN 301549 [33].

The current version of the accessibility guidelines is “Web Content Accessibility Guidelines 2.1” (WCAG 2.1) [23]. WCAG 2.1 consists of 4 principles, 13 guidelines and 76 compliance criteria. The four principles refer to [34].

Principle 1—perceptibility: refers to the good practices regarding the presentation of information and user interface components. It consists of 4 guidelines and 29 compliance criteria.

Principle 2—operability: the components of the user interface and navigation must be operable. It includes 5 guidelines and 29 compliance criteria.

Principle 3—comprehensibility: the information and user interface management must be understandable. It has 3 guidelines and 17 compliance criteria.

Principle 4—robustness: the content must be robust enough to rely on the interpretation of a wide variety of user agents, including assistive technologies. It includes a guideline and three compliance criteria.

Usability and accessibility can be combined to achieve the development of more accessible, efficient, equitable and universal tele-rehabilitation systems. This chapter presents a systematic literature review of summative and formative usability studies as well as accessibility studies in the context of tele-rehabilitation systems. The remaining of the manuscript is composed of four sections. Section 2 presents the method used to proceed with the systematic review. Section 3 is a description of the most relevant papers in usability applied to tele-rehabilitation. Section 4 describes the results regarding the accessibility. And Section 5 draws conclusions on the main findings of this literature review.[…]


Continue —> A Systematic Review of Usability and Accessibility in Tele-Rehabilitation Systems | IntechOpen

Figure 1.
PRISMA 2009 flow diagram chart that shows the selection process of the papers included in the literature review for usability.

, , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: