Archive for May, 2019

[Conference Paper] Modelling of a wearable jacket with sensors and actuators for upper limb rehabilitation


Introduction Spinal Cord Injury (SCI) affects a large number of young people and, if left  untreated, can deal irreversible damage to the human body. Several studies have demonstrated the positive impact of physical therapy to the rehabilitation process, promoting neuro-plasticity and thus at least partial restoration of functionality of the body and gait. These studies focus on the implementation of engineered solutions, such as robotic exoskeletons and virtual reality training regimens. The common denominator in most of them is the implementation of some form of Human-Machine Interface (HMI), for the control of these modalities by direct user feedback. These HMIs are based on a plethora of sensor arrays, ranging from direct motion-specific body data, such as Electroencephalography (EEG) and Electromyography (EMG) to more common sensor devices, such as accelerometers and gyroscopes. These sensors can provide direct measurements, tailored to the application at hand and provide the necessary data for the desired functionality. Materials and Methods The proposed device will function as a sensor array for the upper-body, providing live data for muscle activity, through the use of Electromyography (EMG) electrodes, as well as relative joint positioning and rotation, utilizing Inertial Measurement Units (IMUs), for the purpose of monitoring and Augmented Reality (AR) integration. Said motion data will be then used to enhance the users desired movement, through the use of Functional Electronic Stimulation (FES), by providing the necessary impulse to each muscle group, from the measured feedback. The relationship between sensor input and stimulation will allow for reinforcement of the users’ movements, promoting neuroplasticity and ease of movement in the process of neuro-rehabilitation. Furthermore, this modality will act as a platform for several other physiological measurements, such as heart rate and perspiration, essentially creating a functional Body-Area Network (BAN) of sensors. Integration with external motion actuators will be investigated, as a means to provide upper-body support, providing the necessary strength, as a means of easing the rehabilitation process and removing unnecessary stress from the user. Finally, interactions with implanted medical devices will be explored. Such devices could provide telemetry data from inside the body, to be used as a form of direct feedback for the designed Body Area Network (BAN), and the aforementioned stimulation and actuation.

via Modelling of a wearable jacket with sensors and actuators for upper limb rehabilitation

, , , , , , , , , , , ,

Leave a comment

[Abstract + References] Robotic hand system design for mirror therapy rehabilitation after stroke


This paper developed a robotics-assisted device for the stroke patients to perform the hand rehabilitation. Not only the system can perform passive range of motion exercises for impaired hand, but also can perform mirror therapy for pinching and hand grasping motions under the guidance of the posture sensing glove worn on patient’s functional hand. Moreover, the framework and operation flow of the developed system has been and delineated in this paper. Practical results with human subjects are shown in this paper to examine the usability of proposed system, trial experiment of advance mirror therapy that use the proposed system to interact with realities is also presented in this paper.


  1. Bruder N (2010) Faculty of 1000 evaluation for Robot assisted therapy for long-term upper-limb impairment after stroke. F1000—post-publication peer review of the biomedical literatureGoogle Scholar
  2. Bullock IM et al (2012) Assessing assumptions in kinematic hand models: a review. In: 4th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronicsGoogle Scholar
  3. Burgar CG et al (2011) Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J Rehabil Res Dev 48:445–458CrossRefGoogle Scholar
  4. Dohle C et al (2009) Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair 23(3):209–217CrossRefGoogle Scholar
  5. Emerson et al (2016) Control Implementation for an Integrated robotic and virtual mirror therapy system for stroke rehabilitation. In 2016 IEEE 14th international workshop on advanced motion control (AMC)Google Scholar
  6. Hesse S et al (2006) Machines to support motor rehabilitation after stroke 10 years of experience in Berlin. J Rehabil Res Dev 53(5):671–678CrossRefGoogle Scholar
  7. Huang VS, Krakauer JW (2009) Robotic neurorehabilitation: a computational motor learning perspective. J NeuroEng Rehabil 5(6):5CrossRefGoogle Scholar
  8. Johansson BB (2000) Brain plasticity and stroke rehabilitation the Willis lecture. Stroke 31(1):223–230CrossRefGoogle Scholar
  9. Krebs HI et al (2008) A paradigm shift for rehabilitation robotics. IEEE Eng Med Biol Magn 27(4):61–70CrossRefGoogle Scholar
  10. Lo AC et al (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. New Engl J Med 362(19):1772–1783CrossRefGoogle Scholar
  11. Lum P, Burgar CG et al (2005) The mime robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. In: 9th International conference on rehabilitation robotics, pp 511–514Google Scholar
  12. Mendis S (2013) Stroke disability and rehabilitation of stroke: World Health Organization perspective. Int J Stroke 8(1):3–4CrossRefGoogle Scholar
  13. Morris C et al (2017) Low-cost assistive robot for mirror therapy rehabilitation. In: Proceedings of the 2017 IEEE international conference on robotics and biomimetics, pp 2057–2062Google Scholar
  14. Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76(6):S85–S90CrossRefGoogle Scholar
  15. Narang G et al (2013) Use of unobtrusive human-machine interface for rehabilitation of stroke victims through robot assisted mirror therapy. In: Technologies for practical robot applications (TePRA), 2013 IEEE international conference on, pp 1–6Google Scholar
  16. Pérez-Cruzado D et al (2016) Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Aust Occup Ther J 64(2):91–112CrossRefGoogle Scholar
  17. Pu S-W et al (2016) Anthropometry-based structural design of a hand exoskeleton for rehabilitation. In: 23rd International conference on mechatronics and machine vision in practice (M2VIP)Google Scholar
  18. Shahbazi M et al (2014) A framework for supervised robotics-assisted mirror rehabilitation therapy. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS 2014)Google Scholar
  19. Summers JJ et al (2007) Bilateral and unilateral movement training on upper limb function in chronic stroke patients: a TMS study. J Neurol Sci 252(1):76–82CrossRefGoogle Scholar
  20. Sydney Hand Surgery Pty Ltd (2017) Sydney hand surgery clinic. Available: Accessed 2017
  21. Takeuchi N, Izumi S-I (2013) Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat 2013:1–13CrossRefGoogle Scholar

via Robotic hand system design for mirror therapy rehabilitation after stroke | SpringerLink

, , , , , , ,

Leave a comment

[ARTICLE] An Attention-Controlled Hand Exoskeleton for the Rehabilitation of Finger Extension and Flexion Using a Rigid-Soft Combined Mechanism – Full Text

Hand rehabilitation exoskeletons are in need of improving key features such as simplicity, compactness, bi-directional actuation, low cost, portability, safe human-robotic interaction, and intuitive control. This article presents a brain-controlled hand exoskeleton based on a multi-segment mechanism driven by a steel spring. Active rehabilitation training is realized using a threshold of the attention value measured by an electroencephalography (EEG) sensor as a brain-controlled switch for the hand exoskeleton. We present a prototype implementation of this rigid-soft combined multi-segment mechanism with active training and provide a preliminary evaluation. The experimental results showed that the proposed mechanism could generate enough range of motion with a single input by distributing an actuated linear motion into the rotational motions of finger joints during finger flexion/extension. The average attention value in the experiment of concentration with visual guidance was significantly higher than that in the experiment without visual guidance. The feasibility of the attention-based control with visual guidance was proven with an overall exoskeleton actuation success rate of 95.54% (14 human subjects). In the exoskeleton actuation experiment using the general threshold, it performed just as good as using the customized thresholds; therefore, a general threshold of the attention value can be set for a certain group of users in hand exoskeleton activation.


Hand function is essential for our daily life (Heo et al., 2012). In fact, only partial loss of the ability to move our fingers can inhibit activities of daily living (ADL), and even reduce our quality of life (Takahashi et al., 2008). Research on robotic training of the wrist and hand has shown that improvements in finger or wrist level function can be generalized across the arm (Lambercy et al., 2011). Finger muscle weakness is believed to be the main cause of loss of hand function after strokes, especially for finger extension (Cruz et al., 2005Kamper et al., 2006). Hand rehabilitation requires repetitive task exercises, where a task is divided into several movements and patients are asked to practice those movements to improve their hand strength, range of motion, and motion accuracy (Takahashi et al., 2008Ueki et al., 2012). High costs of traditional treatments often prevent patients from spending enough time on the necessary rehabilitation (Maciejasz et al., 2014). In recent years, robotic technologies have been applied in motion rehabilitation to provide training assistance and quantitative assessments of recovery. Studies show that intense repetitive movements with robotic assistance can significantly improve the hand motor functions of patients (Takahashi et al., 2008Ueki et al., 2008Kutner et al., 2010Carmeli et al., 2011Wolf et al., 2006).

Patients should be actively involved in training to achieve better rehabilitation results (Teo and Chew, 2014Li et al., 2018). Motor rehabilitation has implemented Brain Computer Interface (BCI) methods as one of the means to detect human movement intent and get patients to be actively involved in the motor training process (Teo and Chew, 2014Li et al., 2018). Motor imagery-based BCIs (Jiang et al., 2015Pichiorri et al., 2015Kraus et al., 2016Vourvopoulos and Bermúdez I Badia, 2016), movement-related cortical potentials-based BCIs (Xu et al., 2014Bhagat et al., 2016), and steady-state motion visual evoked potential-based BCIs (Zhang et al., 2015) have been used to control rehabilitation robots. However, the high cost and complexity of the preparation in utilizing these methods mean that most current BCI devices are more suitable for research purposes than clinical practices. This is attributable to the fact that the ease of use and device cost are two main factors to consider during the selection of human movement intent detection based on BCIs for practical use (van Dokkum et al., 2015Li et al., 2018). Therefore, non-invasive, easy-to-install BCIs that are convenient to use with acceptable accuracy should be introduced to hand rehabilitation robot control.

Owing to the versatility and complexity of human hands, developing hand exoskeleton robots for rehabilitation assistance in hand movements is challenging (Heo et al., 2012Arata et al., 2013). In recent years, hand exoskeleton devices have drawn much research attention, and the results of current research look promising (Heo et al., 2012). Hand exoskeleton devices mainly use linkage, wire, or hydraulically/pneumatically driven mechanisms (Polygerinos et al., 2015a). The rigid mechanical design of linkage-based mechanisms provides robustness and reliability of power transmission, and has been widely applied in hand exoskeletons (Tong et al., 2010Ito et al., 2011Arata et al., 2013Cui et al., 2015Polygerinos et al., 2015a). However, the safety problem of misalignment between the human finger joints and the exoskeleton joints may occur during rehabilitation movements (Heo et al., 2012Cui et al., 2015). Compensation approaches used in current studies make the mechanism more complicated (Nakagawara et al., 2005Fang et al., 2009Ho et al., 2011). Pneumatic and hydraulic soft hand exoskeletons, which are made of flexible materials, are proposed to assist hand opening or closing (Ang and Yeow, 2017Polygerinos et al., 2015aYap et al., 2015b). However, despite bi-directional assistance—namely finger flexion and extension—being essential for hand rehabilitation (Iqbal et al., 2014), a large group of current soft hand exoskeleton devices only provide finger flexion assistance (Connelly et al., 2010Polygerinos et al., 20132015aYap et al., 2015ab). Wire-driven mechanisms can also be complex to transmit bi-directional movements since wires can only transmit forces along one direction (In et al., 2015Borboni et al., 2016). In order to transmit bi-directional movements, a tendon-driven hand exoskeleton was proposed, where the tendon works as a tendon during the extension movement and as compressed flexible beam constrained into rectilinear slides mounted on the distal sections of the glove during flexion (Borboni et al., 2016). Arata et al. (2013) attempted to avoid wire extension and other associated issues by proposing a hand exoskeleton with a three-layered sliding spring mechanism. Hand rehabilitation exoskeleton devices are still seeking to achieve key features such as low complexity, compactness, bi-directional actuation, low cost, portability, safe human-robotic interaction, and intuitive control.

In this article, we describe the design and characterization of a novel multi-segment mechanism driven by one layer of a steel spring that can assist both extension and flexion of the finger. Thanks to the inherent features of this multi-segment mechanism, joint misalignment between the device and the human finger is no longer a problem, enhancing the simplicity and flexibility of the device. Moreover, its compliance makes the hand exoskeleton safe for human-robotic interaction. This mechanism can generate enough range of motion with a single input by distributing an actuated linear motion to the rotational motions of finger joints. Active rehabilitation training is realized by using a threshold of the attention value measured by a commercialized electroencephalography (EEG) sensor as a brain-controlled switch for the hand exoskeleton. Features of this hand exoskeleton include active involvement of patients, low complexity, compactness, bi-directional actuation, low cost, portability, and safe human-robotic interaction. The main contributions of this article include: (1) prototyping and evaluation of a hand exoskeleton with a rigid-soft combined multi-segment mechanism driven by one layer of a steel spring with a sufficient output force capacity; (2) using attention-based BCI control to increase patients’ participation in exoskeleton-assisted hand rehabilitation; and (3) determining the threshold of attention value for our attention-based hand rehabilitation robot control.

Exoskeleton Design

Design Requirements

The target users are stroke survivors during flaccid paralysis period who need continuous passive motion training of their hands. They should also be able to focus their attention on motion rehabilitation training for at least a short period of time. For the purpose of hand rehabilitation, an exoskeleton should have minimal ADL interference and have the ability to generate adequate forces to perform hand flexion and extension with a range of motion that is similar or slightly lower than the motion range of a natural finger.

To achieve minimal ADL interference, the device is to be confined to the back of the finger and the width of the device should not exceed the finger width. Here, the width and height constraints of the exoskeleton on the back of the finger are both 20 mm. Low weight of the rehabilitation systems is a key requirement to allow practical use by a wide stroke population (Nycz et al., 2016). Therefore, the target weight of the exoskeleton should be as light as possible to make the patient feel more comfortable to wear it. The typical weight of other hand exoskeletons is in the range of 0.7 kg–5 kg (CyberGlove Systems Inc., 2016Delph et al., 2013Polygerinos et al., 2015aRehab-Robotics Company Ltd., 2019). In this article, the target weight of the exoskeleton is less than 0.5 kg.

There are 15 joints in the human hand. The thumb joint consists of an interphalangeal joint (IPJ), a metacarpophalangeal joint (MPJ), and a carpometacarpal joint (CMJ). Each of the other four fingers has three joints including a metacarpophalangeal joint (MCPJ), a proximal interphalangeal joint (PIPJ), and a distal interphalangeal joint (DIPJ). The hand exoskeleton must have three bending degrees of freedom (DOF) to exercise the three joints of the finger. For some rehabilitation applications, it is unnecessary for each of the MCPJ, PIPJ, and DIPJ of the human finger to have independent motion as long as the whole range of motion of the finger is covered. Tripod grasping requires the MPJ and IPJ of the thumb to bend around 51° and 27°; MCPJ, PIPJ, and DIPJ of the index finger to bend around 46°, 48°, and 12°; and for the middle finger to bend around 46°, 54°, and 12° (In et al., 2015). For the execution speed of rehabilitation exercises, physiotherapists suggest a lower speed than 20 s for a flexion/extension cycle of a finger joint (Borboni et al., 2016). It has to be stressed that hyperextension of all these joints should always be carefully avoided.

The exerted force to the finger should be able to enable continuous passive motion training. In addition, the output force should help the patient to generate grasping forces required to manipulate objects in ADL. Pinch forces required to complete functional tasks are typically below 20 N (Smaby et al., 2004). Polygerinos et al. (2015b) estimated each robot finger should exert a distal tip force of about 7.3 N to achieve a palmar grasp—namely four fingers against the palm of the hand—to pick up objects less than 1.5 kg. Existing devices can provide a maximum transmission output force between 7 N and 35 N (Kokubun et al., 2013In et al., 2015Polygerinos et al., 2015bBorboni et al., 2016Nycz et al., 2016).

The design should allow some customization to hand size and adaptability to different patient statuses and different stages of rehabilitation.

Rigid-Soft Combined Mechanism

Based on our established design requirements, a hand exoskeleton was designed and constructed (see Figure 1). In our design, each finger was driven by one actuator for finger extension and flexion, resulting in a highly compact device. A multi-segment mechanism with a spring layer was proposed. It has respectable adaptability, thus avoiding joint misalignment problems. A three-dimensional model of a single finger actuator is shown in Figure 1A. This finger actuator contained a linear motor, a steel strap, and a multi-segment mechanism. As shown in Figure 1B, the spring layer bended and slid because of the linear motion input provided by the linear actuator. The structure then became like a circular sector. When the structure was attached to a finger, it supported the finger flexion/extension motion. Five finger actuators were attached to a fabric glove via Velcro straps and five linear motors were attached to a rigid part which was fixed to the forearm by a Velcro strap. Each steel strap was attached to a motor by a small rigid 3D-printed part. It should be noted that the current structure is not applicable to thumb adduction/abduction.

Figure 1. Design of the hand exoskeleton: (A) CAD drawing of the index finger acuator; (B) bending motion generated by the proposed mutli-segment mechanism with a spring layer; (C) segment thicknesses (unit: mm); and (D) overview of the hand exoskeleton prototype.



Continue —>  Frontiers | An Attention-Controlled Hand Exoskeleton for the Rehabilitation of Finger Extension and Flexion Using a Rigid-Soft Combined Mechanism | Frontiers in Neurorobotics


, , , , , ,

Leave a comment

[THESIS] Validating Creativity: Use of the HTC Vive in Post-Stroke Upper Limb Rehabilitation – Abstract


Physical therapists often creatively use virtual reality (VR) gaming systems in rehabilitation for patients with neurological deficits. However, therapists need to be aware of what games are applicable to their patient population, as well as how the virtual environment affects patients’ perception of their motion. This study investigated how the game Google Tilt Brush, a 3D painting environment offered on the HTC Vive, could be applied in post-stroke upper limb rehabilitation, and explored limitations of the system through measuring reach distance of healthy subjects. Nine healthy subjects were recruited and asked to perform various reaching and drawing tasks while data on their movement was gathered using a Vicon motion capture system. The data showed that while in simple reaching tasks individual subjects may alter their reach distance by up to 3 cm in the virtual environment, across all subjects there is not a statistically significant change. Moreover, in more complicated drawing tasks, participants could reliably reach to particular points, but most participants missed the exact target by several centimeters. Overall, it seems that the HTC Vive and Google Tilt Brush can be utilized in post-stroke upper limb rehabilitation if therapists monitor patients to ensure they are accomplishing the desired movement.

via Validating Creativity: Use of the HTC Vive in Post-Stroke Upper Limb Rehabilitation

, , , , , , , , ,

Leave a comment

[Abstract + References] Upper Limb Rehabilitation Therapies Based in Videogames Technology Review


Worldwide, stroke is the third cause of physical disability, rehabilitation therapy is a main topic of focus for the recovery of life quality. Rehabilitation of these patients presents great challenges since many of them do not find the motivation to perform the necessary exercises, or do not have the economic resources or the adequate support to receive physiotherapy. For several years now, an alternative that has been in development is game-based rehabilitation, since this could be used in a hospital environment and eventually at patients home. The aim of this review is to present the advances in videogames technology to be used for rehabilitation and training purposes- in preparation for prosthetics fitting or Neuroprosthesis control training–, as well as the devices that are being used to make this alternative more tangible. Videogames technology rehabilitation still has several challenges to work on, more research and development of platforms to have a larger variety of games to engage with different age-range patients is still necessary.
1. Y. X. Hung , P. C. Huang , K. T. Chen , and W. C. Chu , “ What do stroke patients look for in game-based rehabilitation: A survey study ,” Med. (United States) , vol. 95 , no. 11 , pp. 1 – 10 , 2016 .

2. E. Vogiatzaki , Y. Gravezas , N. Dalezios , D. Biswas , A. Cranny , and S. Ortmann , “ Telemedicine System for Game-Based Rehabilitation of Stroke Patients in the FP7- ‘ StrokeBack ’ Project ,” 2014 .

3. W. Johnson , O. Onuma , and S. Sachdev , “ Stroke: a global response is needed ,” Bull. World Heal. Organ ., vol. 94 p. 634 – 634A , 2016 .

4. A. Tabor , S. Bateman , E. Scheme , D. R. Flatla , and K. Gerling , “ Designing Game-Based Myoelectric Prosthesis Training ,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems – CHI ’17 , 2017 , pp. 1352 – 1363 .

5. B. Lange et al. , “ Interactive game-based rehabilitation using the Microsoft Kinect ,” Proc. – IEEE Virtual Real ., no. November 2016 , pp. 171 – 172 , 2012 .

6. C. Prahm , I. Vujaklija , F. Kayali , P. Purgathofer , and O. C. Aszmann , “ Game-Based Rehabilitation for Myoelectric Prosthesis Control ,” JMIR Serious Games , vol. 5 , no. 1 , pp. 1 – 13 , 2017 .

7. B. D. Winslow , M. Ruble , and Z. Huber , “ Mobile, Game-Based Training for Myoelectric Prosthesis Control ,” Front. Bioeng. Biotechnol .,vol. 6 , no. July , pp. 1 – 8 , 2018 .

8. “ The SENIAM Project ,” 2019 . [Online]. Available: . [Accessed: 21-Jan-2019 ].

9. M. B. I. Reaz , M. S. Hussain , and F. Mohd-Yasin , “ Techniques of EMG signal analysis: Detection, processing, classification and applications ,” Biol. Proced. Online , vol. 8 , no. 1 , pp. 11 – 35 , 2006 .

10. R. S. Armiger and R. J. Vogelstein , “ Air-Guitar Hero: A real-time video game interface for training and evaluation of dexterous upper-extremity neuroprosthetic control algorithms ,” Circuits Syst. Conf. BIOCAS 2008 , pp. 121 – 124 , 2008 .

11. H. Oppenheim , R. S. Armiger , and R. J. Vogelstein , “ WiiEMG: A real-time environment for control of the Wii with surface electromyography ,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems , 2010 , pp. 957 – 960 .

12. G. I. Yatar and S. A. Yildirim , “ Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial ,” J. Phys. Ther. Sci ., vol. 27 , no. 4 , pp. 1145 – 1151 , 2015 .

13. N. Norouzi-Gheidari , M. F. Levin , J. Fung , and P. Archambault , “ Interactive virtual reality game-based rehabilitation for stroke patients ,” in 2013 International Conference on Virtual Rehabilitation, ICVR 2013 2013 .

14. B. Lange , C. Chang , E. Suma , B. Newman , A. S. Rizzo , and M. Bolas , “ Development and Evaluation of Low Cost Game-Based Balance Rehabilitation Tool Using the Microsoft Kinect Sensor ,” 2011 , pp. 1831 – 1834 .

15. Y. Chen et al. , “ Game Analysis, Validation, and Potential Application of EyeToy Play and Play 2 to Upper-Extremity Rehabilitation ,” no. December , 2014 .

16. P. Visconti , F. Gaetani , G. A. Zappatore , and P. Primiceri , “ Technical features and functionalities of Myo armband: An overview on related literature and advanced applications of myoelectric armbands mainly focused on arm prostheses ,” Int. J Smart Sens. Intell. Syst ., vol. 11 , no. 1 , pp. 1 – 25 , 2018 .

17. S. S. Esfahlani and G. Wilson , “ Development of Rehabilitation System (ReHabgame) through Monte-Carlo Tree Search Algorithm ,” 2018 , pp. 1 – 8 .

18. “ Welcome to Myo Support ,” 2019 . [Online]. Available: [Accessed: 19-Jan-2019 ].

19. “ PAULA 1.2 | Myo Software | Myo Hands and Components |Upper Limb Prosthetics | Prosthetics | Ottobock US Healthcare .”[Online]. Available: [Accessed: 21-Jan-2019 ].

20. J. Lewis , P. Merritt , M. Bowler , and D. Brown , “ Evaluation of the suitability of games based stroke rehabilitation using the Novint Falcon ,” 2018 , no. August .

21. G. Ghazaei , A. Alameer , P. Degenaar , G. Morgan , and K. Nazarpour , “ Deep learning-based artificial vision for grasp classification in myoelectric hands ,” J. Neural Eng ., vol. 14 , no. 3 , 2017 .

22. B. Terlaak , H. Bouwsema , C. K. V. D. Sluis , and R. M. Bongers , “ Virtual training of the myosignal ,” PLoS One , vol. 10 , no. 9 , 2015 .

23. J. W. Burke , M. D. J. McNeill , D. K. Charles , P. J. Morrow , J. H. Crosbie , and S. M. McDonough , “ Designing Engaging, Playable Games for Rehabilitation ,” in 8th International Conference on Disability, Virtual Reality and Associated Technologies (ICDVRAT) , 2010 , pp. 195 – 201 .


via Upper Limb Rehabilitation Therapies Based in Videogames Technology Review – IEEE Conference Publication

, , , , , , , , , ,

Leave a comment

[Abstract + References] Complex network changes during a virtual reality rehabilitation protocol following stroke: a case study


Stroke is one of the main causes of disabilities caused by injuries to the human central nervous system, yielding a wide range of mild to severe impairments that can compromise sensorimotor and cognitive functions. Although rehabilitation protocols may improve function of stroke survivors, patients often reach plateaus while undergoing therapy. Recently, virtual reality (VR) technologies have been paired with traditional rehabilitation aiming to improve function recovery after stroke. Aiming to better understand structural brain changes due to VR rehabilitation protocols, we modeled the brain as a graph and extracted three measures representing the network’s topology: degree, clustering coefficient and betweenness centrality (BC). In this single case study, our results indicate that all metrics increased on the ipsilesional hemisphere, while remaining about the same at the contrale-sional site. Particularly, the number of functional connections increased in the lesion area overtime. In addition, the BC displayed the highest variations, and in brain regions related to the patient’s cognitive and motor impairments; hence, we argue that this measure could be regarded as an indicative for brain plasticity mechanisms.
1. J-H. Shin , H. Ryu & S. H. Jang . A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. Journal of NeuroEngineering and Rehabilitation. 2014: 11-32

2. M. S. Cameirão , S. B. i Badia , E. D. Oller & P. F. M. J. Verschure . Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. Journal of NeuroEngineering and Rehabilitation. 2010: 7-48

3. R. M. Yerkes & J. D. Dodson . The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology. 1908. 18: 459-482

4. E. J. Calabrese . Converging concepts: Adaptive response, preconditioning, and the YerkesDodson Law are manifestations of hormesis. Ageing Research Reviews. 2008: 7(1), 820.

5. Page S. J. , Fulk G. D. , Boyne P. Clinically Important Differences for the Upper-Extremity Fugl-Meyer Scale in People With Minimal to Moderate Impairment Due to Chronic Stroke. Physical Therapy 92(6): 791798, 2012. doi: 10.2522/ptj.20110009

6. Ogawa S , Lee TM , Kay AR , Tank DW . Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990; 87(24):9868-72. doi: 10.1073/pnas.87.24.9868

7. NK. Logothetis , J. Pauls , M. Augath , T. Trinath , A. Oeltermann . Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001. 412(6843):150-7

8. M.D. Fox , M. E. Raichle . Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007. 8(9):700-11.

9. de Campos, B. M. , Coan, A. C. , Lin Yasuda, C. , Casseb, R. F. and Cendes, F. (2016), Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Hum. Brain Mapp. doi: 10.1002/hbm.23231

10. J. D. Power , A. L. Cohen , S. M. Nelson , G. S. Wig , K. A. Barnes , J. A. Church , A. C. Vogel , T. O. Laumann , F. M. Miezin , B. L. Schlagger , S. E. Petersen . Functional network organization of the human brain. Neuron. 2011: 72(4): 665 – 678.

11. Rubinov M. and Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52(3): 1059-1069. doi: 10.1016/j.neuroimage.2009.10.003

12. M. E. J. Newman . A measure of betweenness centrality based on random walks. Soc. Netw. 2005. 27: 39 – 57.


via Complex network changes during a virtual reality rehabilitation protocol following stroke: a case study – IEEE Conference Publication

, , , , , ,

Leave a comment

[Abstract + References] eConHand: A Wearable Brain-Computer Interface System for Stroke Rehabilitation


Brain-Computer Interface (BCI) combined with assistive robots has been developed as a promising method for stroke rehabilitation. However, most of the current studies are based on complex system setup, expensive and bulky devices. In this work, we designed a wearable Electroencephalography(EEG)-based BCI system for hand function rehabilitation of the stroke. The system consists of a customized EEG cap, a small-sized commercial amplifer and a lightweight hand exoskeleton. In addition, visualized interface was designed for easy use. Six healthy subjects and two stroke patients were recruited to validate the safety and effectiveness of our proposed system. Up to 79.38% averaged online BCI classification accuracy was achieved. This study is a proof of concept, suggesting potential clinical applications in outpatient environments.

2. E. Donchin , K. Spencer and R. Wijesinghe , “The mental prosthesis: assessing the speed of a P300-based brain-computer interface”, IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 174-179, 2000.

3. D. McFarland and J. Wolpaw , “Brain-Computer Interface Operation of Robotic and Prosthetic Devices”, Computer, vol. 41, no. 10, pp. 52-56, 2008.

4. Xiaorong Gao , Dingfeng Xu , Ming Cheng and Shangkai Gao , “A bci-based environmental controller for the motion-disabled”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 137-140, 2003.

5. A. Ramos-Murguialday , D. Broetz , M. Rea et al “Brain-machine interface in chronic stroke rehabilitation: A controlled study”, Annals of Neurology, vol. 74, no. 1, pp. 100-108, 2013.

6. F. Pichiorri , G. Morone , M. Petti et al “Brain-computer interface boosts motor imagery practice during stroke recovery”, Annals of Neurology, vol. 77, no. 5, pp. 851-865, 2015.

7. M. A. Cervera , S. R. Soekadar , J. Ushiba et al “Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis”, Annals of Clinical and Translational Neurology, vol. 5, no. 5, pp. 651-663, 2018.

8. K. Ang , K. Chua , K. Phua et al “A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke”, Clinical EEG and Neuroscience, vol. 46, no. 4, pp. 310-320, 2014.

9. N. Bhagat , A. Venkatakrishnan , B. Abibullaev et al “Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors”, Frontiers in Neuroscience, vol. 10, pp. 122, 2016.

10. J. Webb , Z. G. Xiao , K. P. Aschenbrenner , G. Herrnstadt , and C. Menon , “Towards a portable assistive arm exoskeleton for stroke patient rehabilitation controlled through a brain computer interface”, in Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference, pp. 1299-1304, 2012.

11. A. L. Coffey , D. J. Leamy , and T. E. Ward , “A novel BCI-controlled pneumatic glove system for home-based neurorehabilitation”, in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, pp. 3622-3625, 2014.

12. D. Bundy , L. Souders , K. Baranyai et al “Contralesional Brain-Computer Interface Control of a Powered Exoskeleton for Motor Recovery in Chronic Stroke Survivors”, Stroke, vol. 48, no. 7, pp. 1908-1915, 2017.

13. X. Shu , S. Chen , L. Yao et al “Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients”, Frontiers in Neuroscience, vol. 12, pp. 93, 2018.

14. A. Delorme , T. Mullen , C. Kothe et al “EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing”, Computational Intelligence and Neuroscience, vol. 2011, pp. 1-12, 2011.

15. G. Schalk , D. McFarland , T. Hinterberger , N. Birbaumer and J. Wolpaw , “BCI2000: A General-Purpose Brain-Computer Interface (BCI) System”, IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1034-1043, 2004.

16. M. H. B. Azhar , A. Casey , and M. Sakel , “A cost-effective BCI assisted technology framework for neurorehabilitation”, The Seventh International Conference on Global Health Challenges, 18th-22nd November, 2018. (In Press)

17. C. M. McCrimmon , M. Wang , L. S. Lopes et al “A small, portable, battery-powered brain-computer interface system for motor rehabilitation”, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2776-2779, 2016.

18. J. Meng , B. Edelman , J. Olsoe et al “A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance”, Frontiers in Neuroscience, vol. 12, pp. 227, 2018.

19. T. Mullen , C. Kothe , Y. Chi et al “Real-time neuroimaging and cognitive monitoring using wearable dry EEG”, IEEE Transactions on Biomedical Engineering, vol. 62, no. 11, pp. 2553-2567, 2015.


via eConHand: A Wearable Brain-Computer Interface System for Stroke Rehabilitation – IEEE Conference Publication

, , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Electromyographic indices of muscle fatigue of a severely paralyzed chronic stroke patient undergoing upper limb motor rehabilitation


Modern approaches to motor rehabilitation of severe upper limb paralysis in chronic stroke decode movements from electromyography for controlling rehabilitation orthoses. Muscle fatigue is a phenomenon that influences these neurophysiological signals and may diminish the decoding quality. Characterization of these potential signal changes during movement patterns of rehabilitation training could therefore help improve the decoding accuracy. In the present work we investigated how electromyographic indices of muscle fatigue in the Deltoid Anterior muscle evolve during typical forward reaching movements of a rehabilitation training in healthy subjects and a stroke patient. We found that muscle fatigue in healthy subjects changed the neurophysiological signal. In the patient, however, no consistent change was observed over several sessions.
1. V. L. Feigin , B. Norrving , M. G. George , J. L. Foltz , A. Roth Gregory , and G. A. Mensah , “Prevention of stroke: a strategic global imperative,” Nat. Rev. Neurol., vol. 107, pp. 501–512, 2016.

2. A. Ramos-Murguialday et al , “Brain-machine interface in chronic stroke rehabilitation: a controlled study,” Ann. Neurol., vol. 74, no. 1, pp. 100–108, 2013.

3. A. Sarasola-Sanz et al , “A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients,” IEEE Int Conf Rehabil Robot, vol. 2017, pp. 895–900, Jul. 2017.

4. R. M. Enoka and J. Duchateau , “Muscle fatigue: what, why and how it influences muscle function,” J Physiol, vol. 586, no. 1, pp. 11–23, Jan. 2008.

5. M. González-Izal , A. Malanda , E. Gorostiaga , and M. Izquierdo , “Electromyographic models to assess muscle fatigue,” J. Electromyogr. Kinesiol., vol. 22, no. 4, pp. 501–512, Aug. 2012.

6. A. Sarasola Sanz et al , “EMG-based multi-joint kinematics decoding for robot-aided rehabilitation therapies,” in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015.

7. P. V. Komi and P. Tesch , “EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man,” Eur. J Appl Physiol, vol. 42, no. 1, pp. 41–50, Sep. 1979.

8. D. R. Rogers and D. T. MacIsaac , “A comparison of EMG-based muscle fatigue assessments during dynamic contractions,” J. Electromyogr. Kinesiol., vol. 23, no. 5, pp. 1004–1011, Oct. 2013.

9. B. Bigland-Ritchie , E. F. Donovan , and C. S. Roussos , “Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts,” J Appl Physiol Respir Env. Exerc Physiol, vol. 51, no. 5, pp. 1300–1305, Nov. 1981.

10. G. V. Dimitrov , T. I. Arabadzhiev , K. N. Mileva , J. L. Bowtell , N. Crichton , and N. A. Dimitrova , “Muscle Fatigue during Dynamic Contractions Assessed by New Spectral Indices,” Med. Sci. Sports Exerc., 2006.

11. N. A. Riley and M. Bilodeau , “Changes in upper limb joint torque patterns and EMG signals with fatigue following a stroke,” Disabil Rehabil, vol. 24, no. 18, pp. 961–969, Dec. 2002.

12. M. J. Campbell , A. J. McComas , and F. Petito , “Physiological changes in ageing muscles,” J. Neurol. Neurosurg. Psychiatry, vol. 36, no. 2, pp. 174–182, 1973.


via Electromyographic indices of muscle fatigue of a severely paralyzed chronic stroke patient undergoing upper limb motor rehabilitation – IEEE Conference Publication

, , , , , , , , , , ,

Leave a comment

[Abstract + References] Self-paced movement intention recognition from EEG signals during upper limb robot-assisted rehabilitation


Currently, one of the challenges in EEG-based brain-computer interfaces (BCI) for neurorehabilitation is the recognition of the intention to perform different movements from same limb. This would allow finer control of neurorehabilitation and motor recovery devices by end-users [1]. To address this issue, we assess the feasibility of recognizing two self-paced movement intentions of the right upper limb plus a rest state from EEG signals recorded during robot-assisted rehabilitation therapy. In addition, the work proposes the use of Multi-CSP features and deep learning classifiers to recognize movement intentions of the same limb. The results showed performance peaked greater at (80%) using a novel classification models implemented in a multiclass classification scenario. On the basis of these results, the decoding of the movement intention could potentially be used to develop more natural and intuitive robot assisted neurorehabilitation therapies
1. S. R. Soekadar , N. Birbaumer , M. W. Slutzky , and L. G. Cohen , “Brain machine interfaces in neurorehabilitation of stroke,” Neurobiology of Disease, vol. 83, pp. 172-179, 2015.

2. P. Ofner , A. Schwarz , J. Pereira , and G. R. Müller-Putz , “Upper limb movements can be decoded from the time-domain of low-frequency EEG,” PLoS One, vol. 12, no. 8, p. e0182578, Aug 2017, poNE-D- 17-04785[PII].

3. F. Shiman , E. Lopez-Larraz , A. Sarasola-Sanz , N. Irastorza-Landa , M. Spler , N. Birbaumer , and A. Ramos-Murguialday , “Classification of different reaching movements from the same limb using EEG,” Journal of Neural Engineering, vol. 14, no. 4, p. 046018, 2017.

4. J. Pereira , A. I. Sburlea , and G. R. Müller-Putz , “EEG patterns of self- paced movement imaginations towards externally-cued and internally- selected targets,” Scientific Reports, vol. 8, no. 1, p. 13394, 2018.

5. R. Vega , T. Sajed , K. W. Mathewson , K. Khare , P. M. Pilarski , R. Greiner , G. Sanchez-Ante , and J. M. Antelis , “Assessment of feature selection and classification methods for recognizing motor imagery tasks from electroencephalographic signals,” Artif. Intell. Research, vol. 6, no. 1, p. 37, 2017.

6. I. Figueroa-Garcia et al , “Platform for the study of virtual task- oriented motion and its evaluation by EEG and EMG biopotentials,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug 2014, pp. 1174–1177.

7. B. Graimann and G. Pfurtscheller , “Quantification and visualization of event-related changes in oscillatory brain activity in the timefrequency domain,” in Event-Related Dynamics of Brain Oscillations, ser. Progress in Brain Research, C. Neuper and W. Klimesch , Eds. Elsevier, 2006, vol. 159, pp. 79 – 97.

8. G. Pfurtscheller and F. L. da Silva , “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1842 – 1857, 1999.

9. G. Dornhege , B. Blankertz , G. Curio , and K. Muller , “Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 993–1002, 2004.

10. X. Yong and C. Menon , “EEG classification of different imaginary movements within the same limb,” PLOS ONE, vol. 10, no. 4, pp. 1–24, 04 2015.

11. L. G. Hernandez , O. M. Mozos , J. M. Ferrandez , and J. M. Antelis , “EEG-based detection of braking intention under different car driving conditions,” Frontiers in Neuroinformatics, vol. 12, p. 29, 2018. [Online]. Available:

12. L. G. Hernandez and J. M. Antelis , “A comparison of deep neural network algorithms for recognition of EEG motor imagery signals,” in Pattern Recognition, 2018, pp. 126–134.

13. M. Abadi et al , “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from [Online]. Available:

via Self-paced movement intention recognition from EEG signals during upper limb robot-assisted rehabilitation – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[NEWS] Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk

Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk again and exhibit partial motor recovery



In another major clinical breakthrough of the Walk Again Project, a non-profit international consortium aimed at developing new neuro-rehabilitation protocols, technologies and therapies for spinal cord injury, two patients with paraplegia regained the ability to walk with minimal assistance, through the employment of a fully non-invasive brain-machine interface that does not require the use of any invasive spinal cord surgical procedure. The results of this study appeared on the May 1 issue of the journal Scientific Reports.

The two patients with paraplegia (AIS C) used their own brain activity to control the non-invasive delivery of electrical pulses to a total of 16 muscles (eight in each leg), allowing them to produce a more physiological walk than previously reported, requiring only a conventional walker and a body weight support system as assistive devices. Overall, the two patients were able to produce more than 4,500 steps using this new technology, which combines a non-invasive brain-machine interface, based on a 16-channel EEG, to control a multi-channel functional electrical stimulation system (FES), tailored to produce a much smoother gait pattern than the state of the art of this technique.

“What surprised us was that, in addition to allowing these patients to walk with little help, one of them displayed a clear motor improvement by practicing with this new approach. Patients required approximatively 25 sessions to master the training before they were able to walk using this apparatus,” said Solaiman Shokur one of the authors of the study.

The two patients that used this new rehabilitation approach had previously participated in the long-term neurorehabilitation study carried out using the Walk Again Project Neurorehabilitation (WANR) protocol. As reported in a recent publication from the same team (Shokur et al., PLoS One, Nov. 2018), all seven patients who participated in that protocol for a period of 28 months improved their clinical status, from complete paraplegia (AIS A or B, meaning no motor functions below the level of the injury, according to the ASIA classification) to partial paraplegia (AIS C, meaning partial recovery of sensory and motor function below the injury level). This significant neurological recovery included major clinical improvements in sensory discrimination (tactile, nociception, vibration, and pressure), voluntary motor control of abdomen and leg muscles, and important gains in autonomic control, such as bladder, bowel, and sexual functions.

“The last two studies published by the Walk Again Project clearly indicate that partial neurological and functional recovery can be induced in chronic spinal cord injury patients by combining multiple non-invasive technologies that are based around the concept of using a brain-machine interface to control different types of actuators, like virtual avatars, robotic walkers, or muscle stimulating devices, to allow the total involvement of patients in their own rehabilitation routine,” said Miguel Nicolelis, scientific director of the Walk Again Project and one of the authors of the study.

In a recent report by another group, one AIS C and two AIS D patients were able to walk thanks to the employment of an invasive method for spinal cord electrical stimulation, which required a spinal surgical procedure. In contrast, in the present study two AIS C patients – which originally were AIS A (see Supplemental Material below)- and a third AIS B subject, who recently achieved similar results, were able to regain a significant degree of autonomous walking without the need for such invasive treatments. Instead, these patients only received electrical stimulation patterns delivered to the skin surface of their legs, so that a total of eight muscles in each limb could be electrically stimulated in a physiologically accurate sequence. This was done in order to produce a smoother and more natural pattern of locomotion.

“Crucial for this implementation was the development of a closed-loop controller that allowed real-time correction of the patients’ walking pattern, taking into account muscle fatigue and external perturbations, in order to produce a predefined gait trajectory. Another major component of our approach was the use of a wearable haptic display to deliver tactile feedback to the patients´ forearms in order to provide them with a continuous source of proprioceptive feedback related to their walking,” said Solaiman Shokur.

To control the pattern of electrical muscle stimulation in each leg, these patients utilized an EEG-based brain-machine interface. In this setup, patients learned to alternate the generation of “stepping motor imagery” activity in their right and left motor cortices, in order to create alternated movements of their left and right legs.

According to the authors, the patients exhibited not only “less dependency on walking assistance, but also partial neurological recovery, with substantial rates of motor improvement in one of them.” The improvement in motor control in this last AIS C patient was 9 points in the lower extremity motor score (LEMS), which was comparable with that observed using invasive spinal cord stimulation.

Based on the results obtained over the past 5 years, the WAP now intends to combine all its neurorehabilitation tools into a single integrated, non-invasive platform to treat spinal cord injury patients. This platform will allow patients to begin training soon after the injury occurs. It will also allow the employment of a multi-dimensional integrated brain-machine interface capable of simultaneously controlling virtual and robotic actuators (like a lowerlimb exoskeleton), a multi-channel non-invasive electrical muscle stimulation system (like the FES used in the present study), and a novel non-invasive spinal cord stimulation approach. In this final configuration, this WAP platform will incorporate all these technologies together in order to maximize neurological and functional recovery in the shortest possible time, without the need of any invasive procedure.

According to Dr. Nicolelis, “there is no silver bullet to treat spinal cord injuries. More and more, it looks like we need to implement multiple techniques simultaneously to achieve the best neurorehabilitation results. In this context, it is also imperative to consider the occurrence of cortical plasticity as a major component in the planning of our rehabilitation approach.”


The other authors of this paper are Aurelie Selfslagh, Debora S.F. Campos, Ana R. C. Donati, Sabrina Almeida, Seidi Y. Yamauti, Daniel B. Coelho and Mohamed Bouri. This project was developed through a collaboration between the Neurorehabilitation Laboratory of the Associação Alberto Santos Dumont para Apoio à Pesquisa (AASDAP), the headquarters of the Walk Again Project, the Biomechanics and Motor Control Laboratory at the Federal University of ABC (UFABC), and the Laboratory of Robotic System at the Swiss Institute of Technology of Lausanne (EPFL). It was funded by a grant from the Brazilian Financing Agency for Studies and Projects (FINEP) 01.12.0514.00, Ministry of Science, Technology, Innovation and Communications (MCTIC), to AASDAP.

Supplemental Material:

Supporting Research Studies:


via Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk | EurekAlert! Science News


, , , , , , , , , ,

Leave a comment

%d bloggers like this: