[Abstract] Decoupling Finger Joint Motion in an Exoskeletal Hand: A Design for Robot-assisted Rehabilitation

Abstract

In this study, a cable-driven exoskeleton device is developed for stroke patients to enable them to perform passive range of motion exercises and teleoperation rehabilitation of their impaired hands. Each exoskeleton finger is controlled by an actuator via two cables. The motions between the metacarpophalangeal and distal/proximal interphalangeal joints are decoupled, through which the movement pattern is analogous to that observed in the human hand. A dynamic model based on the Lagrange method is derived to estimate how cable tension varies with the angular position of the finger joints. Two discernable phases are observed, each of which reflects the motion of the metacarpophalangeal and distal/proximal interphalangeal joints. The tension profiles of exoskeleton fingers predicted by the Lagrange model are verified through a mechatronic integrated platform. The model can precisely estimate the tensions at different movement velocities, and it shows that the characteristics of two independent phases remain the same even for a variety of movement velocities. The feasibility for measuring resistance when manipulating a patient’s finger is demonstrated in human experiments. Specifically, the net force required to move a subject’s finger joints can be accounted for by the Lagrange model.

via https://ieeexplore.ieee.org/abstract/document/8701573

, , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: