[Abstract + References] Complex network changes during a virtual reality rehabilitation protocol following stroke: a case study

Abstract

Stroke is one of the main causes of disabilities caused by injuries to the human central nervous system, yielding a wide range of mild to severe impairments that can compromise sensorimotor and cognitive functions. Although rehabilitation protocols may improve function of stroke survivors, patients often reach plateaus while undergoing therapy. Recently, virtual reality (VR) technologies have been paired with traditional rehabilitation aiming to improve function recovery after stroke. Aiming to better understand structural brain changes due to VR rehabilitation protocols, we modeled the brain as a graph and extracted three measures representing the network’s topology: degree, clustering coefficient and betweenness centrality (BC). In this single case study, our results indicate that all metrics increased on the ipsilesional hemisphere, while remaining about the same at the contrale-sional site. Particularly, the number of functional connections increased in the lesion area overtime. In addition, the BC displayed the highest variations, and in brain regions related to the patient’s cognitive and motor impairments; hence, we argue that this measure could be regarded as an indicative for brain plasticity mechanisms.
1. J-H. Shin , H. Ryu & S. H. Jang . A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. Journal of NeuroEngineering and Rehabilitation. 2014: 11-32

2. M. S. Cameirão , S. B. i Badia , E. D. Oller & P. F. M. J. Verschure . Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. Journal of NeuroEngineering and Rehabilitation. 2010: 7-48

3. R. M. Yerkes & J. D. Dodson . The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology. 1908. 18: 459-482

4. E. J. Calabrese . Converging concepts: Adaptive response, preconditioning, and the YerkesDodson Law are manifestations of hormesis. Ageing Research Reviews. 2008: 7(1), 820.

5. Page S. J. , Fulk G. D. , Boyne P. Clinically Important Differences for the Upper-Extremity Fugl-Meyer Scale in People With Minimal to Moderate Impairment Due to Chronic Stroke. Physical Therapy 92(6): 791798, 2012. doi: 10.2522/ptj.20110009

6. Ogawa S , Lee TM , Kay AR , Tank DW . Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990; 87(24):9868-72. doi: 10.1073/pnas.87.24.9868

7. NK. Logothetis , J. Pauls , M. Augath , T. Trinath , A. Oeltermann . Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001. 412(6843):150-7

8. M.D. Fox , M. E. Raichle . Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007. 8(9):700-11.

9. de Campos, B. M. , Coan, A. C. , Lin Yasuda, C. , Casseb, R. F. and Cendes, F. (2016), Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Hum. Brain Mapp. doi: 10.1002/hbm.23231

10. J. D. Power , A. L. Cohen , S. M. Nelson , G. S. Wig , K. A. Barnes , J. A. Church , A. C. Vogel , T. O. Laumann , F. M. Miezin , B. L. Schlagger , S. E. Petersen . Functional network organization of the human brain. Neuron. 2011: 72(4): 665 – 678.

11. Rubinov M. and Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52(3): 1059-1069. doi: 10.1016/j.neuroimage.2009.10.003

12. M. E. J. Newman . A measure of betweenness centrality based on random walks. Soc. Netw. 2005. 27: 39 – 57.

 

via Complex network changes during a virtual reality rehabilitation protocol following stroke: a case study – IEEE Conference Publication

, , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: