[Abstract + References] Robotic hand system design for mirror therapy rehabilitation after stroke

Abstract

This paper developed a robotics-assisted device for the stroke patients to perform the hand rehabilitation. Not only the system can perform passive range of motion exercises for impaired hand, but also can perform mirror therapy for pinching and hand grasping motions under the guidance of the posture sensing glove worn on patient’s functional hand. Moreover, the framework and operation flow of the developed system has been and delineated in this paper. Practical results with human subjects are shown in this paper to examine the usability of proposed system, trial experiment of advance mirror therapy that use the proposed system to interact with realities is also presented in this paper.

References

  1. Bruder N (2010) Faculty of 1000 evaluation for Robot assisted therapy for long-term upper-limb impairment after stroke. F1000—post-publication peer review of the biomedical literatureGoogle Scholar
  2. Bullock IM et al (2012) Assessing assumptions in kinematic hand models: a review. In: 4th IEEE RAS/EMBS international conference on biomedical robotics and biomechatronicsGoogle Scholar
  3. Burgar CG et al (2011) Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J Rehabil Res Dev 48:445–458CrossRefGoogle Scholar
  4. Dohle C et al (2009) Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair 23(3):209–217CrossRefGoogle Scholar
  5. Emerson et al (2016) Control Implementation for an Integrated robotic and virtual mirror therapy system for stroke rehabilitation. In 2016 IEEE 14th international workshop on advanced motion control (AMC)Google Scholar
  6. Hesse S et al (2006) Machines to support motor rehabilitation after stroke 10 years of experience in Berlin. J Rehabil Res Dev 53(5):671–678CrossRefGoogle Scholar
  7. Huang VS, Krakauer JW (2009) Robotic neurorehabilitation: a computational motor learning perspective. J NeuroEng Rehabil 5(6):5CrossRefGoogle Scholar
  8. Johansson BB (2000) Brain plasticity and stroke rehabilitation the Willis lecture. Stroke 31(1):223–230CrossRefGoogle Scholar
  9. Krebs HI et al (2008) A paradigm shift for rehabilitation robotics. IEEE Eng Med Biol Magn 27(4):61–70CrossRefGoogle Scholar
  10. Lo AC et al (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. New Engl J Med 362(19):1772–1783CrossRefGoogle Scholar
  11. Lum P, Burgar CG et al (2005) The mime robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke. In: 9th International conference on rehabilitation robotics, pp 511–514Google Scholar
  12. Mendis S (2013) Stroke disability and rehabilitation of stroke: World Health Organization perspective. Int J Stroke 8(1):3–4CrossRefGoogle Scholar
  13. Morris C et al (2017) Low-cost assistive robot for mirror therapy rehabilitation. In: Proceedings of the 2017 IEEE international conference on robotics and biomimetics, pp 2057–2062Google Scholar
  14. Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76(6):S85–S90CrossRefGoogle Scholar
  15. Narang G et al (2013) Use of unobtrusive human-machine interface for rehabilitation of stroke victims through robot assisted mirror therapy. In: Technologies for practical robot applications (TePRA), 2013 IEEE international conference on, pp 1–6Google Scholar
  16. Pérez-Cruzado D et al (2016) Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Aust Occup Ther J 64(2):91–112CrossRefGoogle Scholar
  17. Pu S-W et al (2016) Anthropometry-based structural design of a hand exoskeleton for rehabilitation. In: 23rd International conference on mechatronics and machine vision in practice (M2VIP)Google Scholar
  18. Shahbazi M et al (2014) A framework for supervised robotics-assisted mirror rehabilitation therapy. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS 2014)Google Scholar
  19. Summers JJ et al (2007) Bilateral and unilateral movement training on upper limb function in chronic stroke patients: a TMS study. J Neurol Sci 252(1):76–82CrossRefGoogle Scholar
  20. Sydney Hand Surgery Pty Ltd (2017) Sydney hand surgery clinic. Available: http://www.sydneyhandsurgeryclinic.com.au/anatomy.asp. Accessed 2017
  21. Takeuchi N, Izumi S-I (2013) Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat 2013:1–13CrossRefGoogle Scholar

via Robotic hand system design for mirror therapy rehabilitation after stroke | SpringerLink

, , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: