[Conference Paper] Modelling of a wearable jacket with sensors and actuators for upper limb rehabilitation


Introduction Spinal Cord Injury (SCI) affects a large number of young people and, if left  untreated, can deal irreversible damage to the human body. Several studies have demonstrated the positive impact of physical therapy to the rehabilitation process, promoting neuro-plasticity and thus at least partial restoration of functionality of the body and gait. These studies focus on the implementation of engineered solutions, such as robotic exoskeletons and virtual reality training regimens. The common denominator in most of them is the implementation of some form of Human-Machine Interface (HMI), for the control of these modalities by direct user feedback. These HMIs are based on a plethora of sensor arrays, ranging from direct motion-specific body data, such as Electroencephalography (EEG) and Electromyography (EMG) to more common sensor devices, such as accelerometers and gyroscopes. These sensors can provide direct measurements, tailored to the application at hand and provide the necessary data for the desired functionality. Materials and Methods The proposed device will function as a sensor array for the upper-body, providing live data for muscle activity, through the use of Electromyography (EMG) electrodes, as well as relative joint positioning and rotation, utilizing Inertial Measurement Units (IMUs), for the purpose of monitoring and Augmented Reality (AR) integration. Said motion data will be then used to enhance the users desired movement, through the use of Functional Electronic Stimulation (FES), by providing the necessary impulse to each muscle group, from the measured feedback. The relationship between sensor input and stimulation will allow for reinforcement of the users’ movements, promoting neuroplasticity and ease of movement in the process of neuro-rehabilitation. Furthermore, this modality will act as a platform for several other physiological measurements, such as heart rate and perspiration, essentially creating a functional Body-Area Network (BAN) of sensors. Integration with external motion actuators will be investigated, as a means to provide upper-body support, providing the necessary strength, as a means of easing the rehabilitation process and removing unnecessary stress from the user. Finally, interactions with implanted medical devices will be explored. Such devices could provide telemetry data from inside the body, to be used as a form of direct feedback for the designed Body Area Network (BAN), and the aforementioned stimulation and actuation.

via Modelling of a wearable jacket with sensors and actuators for upper limb rehabilitation

, , , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: