[ARTICLE] Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial – Full Text

Abstract

Background

Virtual reality training (VRT) uses computer software to track a user’s movements and allow him or her to interact with a game presented on a television screen. VRT is increasingly being used for the rehabilitation of arm function, balance and walking after stroke. Patients often require ongoing therapy post discharge from inpatient rehabilitation. Outpatient therapy may be limited or inaccessible due to waiting lists, transportation issues, distance etc.; therefore, home-based VRT could provide the required therapy in a more convenient and accessible setting. The objectives of this parallel randomized feasibility trial are to determine (1) the feasibility of using VRT in the home post stroke and (2) the feasibility of a battery of quantitative and qualitative outcome measures of stroke recovery.

Methods

Forty patients who can stand for at least 2 min and are soon to be discharged from inpatient or outpatient rehabilitation post stroke are being recruited in Ottawa, Canada and being randomized to control and experimental groups. Participants in the experimental group use home-based VRT to do rehabilitative exercises for standing balance, stepping, reaching, strengthening and gentle aerobic fitness. Control group participants use an iPad with apps selected to rehabilitate cognition, hand fine motor skills and visual tracking/scanning. Both groups are instructed to perform 30 min of exercise 5 days a week for 6 weeks. VRT intensity and difficulty are monitored and adjusted remotely. Weekly telephone contact is made with all participants. Ability to recruit participants, ability to handle the technology and learn the activities, compliance, safety, enjoyment, perceived efficacy and cost of program delivery will be assessed. A battery of assessments of standing balance, gait and community integration will be assessed for feasibility of completion within this population and potential for improvement following the intervention. Effect sizes will be calculated.

Discussion

The results of this study will be used to support the creation of a definitive randomized controlled trial on the efficacy of home-based VRT for rehabilitation post stroke.

Introduction and objectives

Stroke causes approximately 17,600 hospital admissions per year in Ontario and 50% of individuals who have had a stroke are left with moderate to severe impairment [12]. Most patients who are discharged from inpatient stroke rehabilitation are only 8–10 weeks post stroke and have not completely recovered. Their central nervous systems are still in a period of enhanced neuroplasticity, during which great functional change can be made [34]. Therapy outcomes are dose-dependent; intensive, high-repetition, task-oriented and task-specific therapies are most effective [56]. Therefore, for the greatest recovery possible, these patients require ongoing, intensive therapy. Most are offered this on an outpatient basis. However, for many reasons (transportation difficulties, distance from the rehabilitation center, weather etc.), not all eligible patients are able to attend outpatient therapy. Also, there is a waiting list and a limited number of outpatient therapy sessions are offered to each patient. Home-based therapy may fill an important role towards increasing the availability of rehabilitation, enabling patients to enhance or prolong their therapy and potentially improving outcomes.

Non-immersive virtual reality training (VRT) uses computer software to track the user’s movements and allow him or her to interact with a game or activity presented on a TV screen. It is convenient, timely, enjoyable and may be used for an unlimited period post stroke [78]. VRT has been shown to benefit upper extremity function, standing balance, gait and overall function in the sub-acute and chronic phases post stroke, at least as much as or more than conventional therapy [7910111213].

Home-based VRT offers a promising addition or alternative to existing rehabilitation programs that could make a significant difference in the lives of stroke survivors. A few preliminary studies have investigated the use of home-based VRT for standing balance and upper extremity recovery after stroke and shown potential feasibility of these systems for ongoing rehabilitation in the home [1415161718]. Some VRT platforms allow the user to interface via tactile devices (for example, a dynamic standing frame [14] or robotic glove [18]) while others use motion-tracking via a camera [16]. Some platforms use asynchronous monitoring to allow the therapist to monitor VRT usage and performance after the actual event [16] while others use synchronous monitoring to enable the therapist to watch in while the participant exercises; some even require constant real-time patient/therapist interaction [1719] throughout the therapy session. Users report high satisfaction with home-based VRT [1617], although actual usage can vary greatly [18]. Barriers to the use of home-based VRT include technical issues and lack of previous technical experience [18]. While some previous experience with computers is helpful, those who play video games regularly can become bored with VRT. Facilitators include the flexibility of home-based exercise, support from family and motivation from the VRT itself. Early results, available from a single randomized controlled trial (RCT) with 30 participants, suggest that home-based VRT improves standing balance and gait equally to in-clinic VRT, but that the costs are 44% lower [16].

We wish to add to these early studies of home-based VRT using a virtual reality system (Jintronix Inc.) that was initially developed for stroke rehabilitation and has also been used extensively with healthy and frail elderly individuals. The Jintronix system is marketed for institutional and home use and has a simple-to-use interface, but its home use has not yet been fully evaluated. The games are designed to incorporate motor learning principles such as multiple forms of feedback and task-specific practice that can be progressed to maintain an appropriate level of challenge. Unlike systems used in previous research, the Jintronix system includes a wide selection of games and exercises designed for the rehabilitation of sitting and standing balance, gait and upper extremity use. The system is simple to use and relatively inexpensive; a motion-tracking camera and software eliminates the need for gloves/controllers etc. It is straightforward enough for the patient to use independently; asynchronous monitoring is used to track usage and the therapist can change games and parameters remotely. The purpose of this study is to investigate the feasibility, acceptance and safety of this new, simple-to-use VRT system for use in the home, combined with asynchronous, remote support for the user. The results of this trial will support a definitive RCT in the future.

The primary objective is to assess the feasibility of using VRT in the home with patients post stroke, using quantitative and qualitative methods. Specific objectives are:

  1. 1.

    To estimate the recruitment rate of participants into the study;

  2. 2.

    To assess the ability and compliance of the participants with respect to the components of the research protocol (ability to learn VRT through the training program; ability to comply with the exercise protocol; participant retention);

  3. 3.

    To determine the safety of home-based VRT (presence of minor and major adverse events);

  4. 4.

    To assess the ability of stroke survivors and their study partners to use VRT technology in the home (i.e. technical difficulties, difficulty learning the games);

  5. 5.

    To assess the acceptability of the VRT intervention (enjoyment; perceived efficacy);

  6. 6.

    To estimate the cost for a future definitive RCT on in-home VRT.

The secondary objective is to assess the feasibility of the outcome measures, using quantitative and qualitative methods. Specific objectives are:

  1. 1.

    To assess the feasibility and acceptance of a battery of outcome measures, including physical assessments, questionnaires, an interview and a log book;

  2. 2.

    To assess the potential that home-based VRT might maintain or improve physical outcomes of standing balance, gait and general function and community integration after discharge from hospital-based stroke rehabilitation, compared to those who perform a program of iPad apps designed for fine hand motor skills and cognitive training;

  3. 3.

    To determine the sample size required for a future definitive RCT on in-home VRT.

This study is a prospective, single-site, single-blinded, parallel-group (1:1 ratio) randomized, superiority feasibility trial on the use of VRT for ongoing stroke rehabilitation after discharge from inpatient or outpatient stroke rehabilitation. A feasibility RCT was chosen in order to provide the most useful results to prepare for a future definitive RCT on the efficacy of home-based VRT. iPad apps were chosen as a comparator to VRT because they provide a control group that has equal contact with the researchers and equal time spent in an engaging activity. The use of an active control group (rather than providing control group participants with nothing) was also chosen to facilitate recruitment. The iPad apps chosen to work on hand fine motor control and cognition were not deemed to have any influence on the physical outcome measures of standing balance, gait and gross motor function. The Standard Protocol Items: Recommendation for Interventional Trials (SPIRIT) checklist is available as Additional file 1: Figure S1.[…]

 

Continue —>  Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial | Trials | Full Text

Fig. 1a  Experimental intervention – home-based virtual reality training targeting standing balance, stepping, reaching, strengthening and aerobic exercise. b Control intervention – iPad apps targeting cognition and hand fine motor control

, , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: