[ARTICLE] What is the impact of user affect on motor learning in virtual environments after stroke? A scoping review – Full Text



The purported affective impact of virtual reality (VR) and active video gaming (AVG) systems is a key marketing strategy underlying their use in stroke rehabilitation, yet little is known as to how affective constructs are measured or linked to intervention outcomes. The purpose of this scoping review is to 1) explore how motivation, enjoyment, engagement, immersion and presence are measured or described in VR/AVG interventions for patients with stroke; 2) identify directional relationships between these constructs; and 3) evaluate their impact on motor learning outcomes.


A literature search was undertaken of VR/AVG interventional studies for adults post-stroke published in Medline, PEDro and CINAHL databases between 2007 and 2017. Following screening, reviewers used an iterative charting framework to extract data about construct measurement and description. A numerical and thematic analytical approach adhered to established scoping review guidelines.


One hundred fifty-five studies were included in the review. Although the majority (89%; N = 138) of studies described at least one of the five constructs within their text, construct measurement took place in only 32% (N = 50) of studies. The most frequently described construct was motivation (79%, N = 123) while the most frequently measured construct was enjoyment (27%, N = 42). A summative content analysis of the 50 studies in which a construct was measured revealed that constructs were described either as a rationale for the use of VR/AVGs in rehabilitation (76%, N = 38) or as an explanation for intervention results (56%, N = 29). 38 (76%) of the studies proposed relational links between two or more constructs and/or between any construct and motor learning. No study used statistical analyses to examine these links.


Results indicate a clear discrepancy between the theoretical importance of affective constructs within VR/AVG interventions and actual construct measurement. Standardized terminology and outcome measures are required to better understand how enjoyment, engagement, motivation, immersion and presence contribute individually or in interaction to VR/AVG intervention effectiveness.


An increasing evidence base supports the use of virtual reality (VR) and active video gaming (AVG) systems to promote motor learning in stroke rehabilitation [1234]. However, practical and logistical barriers to VR/AVG implementation in clinical sites have been well described [567]. To support their use, researchers and developers often emphasize the potential advantages of VR/AVG systems over conventional interventions, including that these technologies may enhance a patient’s affective experience in therapy for the purpose of facilitating recovery [891011]. Examining the role of affective factors for motor learning is an emerging area of emphasis in rehabilitation [212131415].

VR/AVG use may enhance patients’ motivation to participate in rehabilitation as well as their engagement in therapeutic tasks. Motivation encourages action toward a goal by eliciting and/or sustaining goal-directed behavior [16]. Motivation can be intrinsic (derived from personal curiosity, importance or relevance of the goal) or extrinsic (elicited via external reward) [17]. Engagement is a cognitive and affective quality or experience of a user during an activity [16]. Many characteristics of VR/AVG play can contribute to user motivation and engagement, such as novelty, salient audiovisual graphics, interactivity, feedback, socialization, optimal challenge [14], extrinsic rewards, intrinsic curiosity or desire to improve in the game, goal-oriented tasks, and meaningful play [18].

Motivation and engagement are hypothesized to support motor learning either indirectly, through increased practice dosage leading to increased repetitive practice, or directly, via enhanced dopaminergic mechanisms influencing motor learning processes [1516]. Yet evidence is required to support these claims. A logical first step is to understand how these constructs are being measured within VR/AVG intervention studies. Several studies have used practice dosage or intensity as an indicator of motivation or engagement [192021]. To the authors’ knowledge, few have specifically evaluated the indirect mechanistic pathway by correlating measurement of patient motivation or engagement in VR/AVGs with practice dosage or intensity. While participants in VR/AVG studies report higher motivation as compared to conventional interventions [222324], conclusions regarding the relationship between motivation and intervention outcomes are limited by lack of consistency and rigour in measurement, including the use of instruments with poor psychometric properties [2223].

The body of research exploring the direct effects of engagement or motivation on motor learning is still in its infancy. Lohse et al. [16] were the first to evaluate whether a more audiovisually enriched as compared to more sterile version of a novel AVG task contributed to skill acquisition and retention in typically developing young adults, finding that participants who played under the enriching condition had greater generalized learning and complex skill retention. Self-reported engagement (User Engagement Scale; UES) was higher in the enriched group, but the only difference in self-reported motivation was in the Effort subscale of the Intrinsic Motivation Inventory (IMI), where the enriched group reported less effort as compared to the sterile group. The authors did not find a significant correlation between engagement, motivation and retention scores. A follow-up study using electroencephalography did not replicate the finding that the more enriched practice condition enhanced learning, it did show that more engaged learners had increased information processing, as measured by reduced attentional reserve [25].

Enjoyment, defined as ‘the state or process of taking pleasure in something’ [26], has less frequently been the subject of study in motor learning research, but has become popular as a way of describing patient interaction with VR/AVGs. Enjoyment may be hypothesized to be a precursor to both motivation and engagement. Given that the prevailing marketing of VR/AVGs is that they are ‘fun’ and ‘enjoyable’ [131427], it is important to evaluate its measurement in the context of other constructs.

Motivation, engagement and enjoyment in VR/AVGs may be influenced by the additional constructs of immersion and presence. Immersion is defined as “the extent to which the VR system succeeds in delivering an environment which refocuses a user’s sensations from the real world to a virtual world” [1328]. Immersion is considered as an objective construct referring to how the computational properties of the technology can deliver an illusion of reality through hardware, software, viewing displays and tracking capabilities [2930]. A recent systematic review [13] could not conclusively state effect of immersion on user performance. Immersion is distinct from presence, defined as the “psychological product of technological immersion” [31]. Presence is influenced by many factors, including the characteristics of the user, the VR/AVG task, and the VR/AVG system [28]. While presence is thought to be related to enhanced motivation and performance [32], relationships between this and other constructs of interest require exploration. Table 1 outlines definitions of constructs of interest to this scoping review.

Table 1

Construct definitions





Motivation encourages action toward a goal by eliciting and/or sustaining goal-directed behavior.



Engagement is a cognitive and affective quality or experience of a user during an activity.



The state or process of taking pleasure in something.



The extent to which the VR system succeeds in delivering an environment which refocuses a user’s sensations from the real world to a virtual world.



The psychological product of technological immersion.


The purpose of this scoping review is to explore the impact of these affective constructs on motor learning after stroke. This greater understanding will enhance the clinical rationale for VR/AVG use and inform directions for subsequent research. Specifically, our objectives were to:

  1. 1.

    Describe how VR/AVG studies measure or report client enjoyment, motivation, engagement, immersion and presence.

  2. 2.

    Evaluate the extent to which motivation, enjoyment, engagement, immersion, and presence impact motor learning.

  3. 3.

    Propose directional relationships between enjoyment, motivation, engagement, immersion, presence and motor learning.



Continue —> What is the impact of user affect on motor learning in virtual environments after stroke? A scoping review | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 2Proposed relationships between the five constructs and motor learning

, , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: