[ARTICLE] Virtual rehabilitation of upper extremity function and independence for stoke: a meta-analysis – Full Text

Abstract

We aimed to conduct a systematic literature review with a meta-analysis to investigate whether virtual reality (VR) approaches have beneficial effects on the upper extremity function and independent activities of stroke survivors. Experimental studies published between 2007 and 2017 were searched from two databases (EBSCOhost and PubMed). This study reviewed abstracts and assessed full articles to obtain evidence on qualitative studies. For the meta-analysis, the studies that estimated the standardized mean between the two groups analyzed the statistical values necessary for calculating the effect size. The present study also evaluated the statistical heterogeneity. In total, 34 studies with 1,604 participants were included, and the number of participants in each study ranged from 10 to 376. Nine studies were assessed to evaluate the quantitative statistical analysis for 698 patients with hemiparetic stroke. The results of the meta-analysis were as follows: The overall effect size was moderate (0.41, P<0.001). The 95% confidence interval ranged from 0.25 to 0.57. However, no significant heterogeneity and publication bias were observed. The results of this study showed that VR approaches are effective in improving upper extremity function and independent activities in stroke survivors.

 

INTRODUCTION

Stroke has varying severity and subsequent functional impact, which depends on the recovery process of an individual and the extent of neurological damage (Chollet et al., 1991). Several stroke survivors experience physical, cognitive, perceptual, and mental impairments that require a period of intensive rehabilitation and may develop permanent disabilities (Teasell et al., 2005). Some stroke survivors can undergo a short period of inpatient rehabilitation program for recovery of function, and others continue to recover for a long period or throughout their lifetimes (Cramer, 2011). Therefore, in the intensive rehabilitation of individuals with neurological diseases, extremely important considerations must be made because of the reintegration of family and social roles and recreational activities (French et al., 2016West and Bernhardt, 2012).
In rehabilitation settings, functional and task-specific trainings are the key elements of therapy and designed to assist stroke survivors in restoring their motor control to attain more-normal functional movement patterns (Teasell et al., 2005). Stroke survivors must have significant changes in the motor control and strength of the trunk and limbs, with an emphasis on the more-affected side and bilateral symmetric movement; these may be achieved using specific reeducation strategies (Veerbeek et al., 2014West and Bernhardt, 2012). In terms of stroke rehabilitation settings, most previous studies were performed in laboratory or clinical settings that are less complex than the outdoor environment (Cho and Lee, 2013). Laboratory and clinical settings are not appropriate for establishing some complex personal space and community surroundings to meet the demands of multiple tasks for stroke survivors (Demain et al., 2013Fung et al., 2012).
Virtual reality (VR) is a computer-generated environment that simulates a realistic experience for practicing functional tasks at intensities higher than those in traditional rehabilitation programs for stroke survivors (Chen et al., 2016). VR may help engage stroke survivors in a repetitive, intensive, and goal-oriented therapy to improve their functional disabilities, activity limitations, and participation restrictions, without considering the cost and burden associated with increasing the number of therapeutic sessions (Merians et al., 2002). Furthermore, VR provides real-time visual feedback for movements, thereby increasing engagement in enjoyable rehabilitation tasks. VR provides rehabilitative clinicians with new and effective therapeutic tools that can help treat various disabilities and enables remote therapy. VR-based interventions lead to clinical improvement and cortical reorganization through repetitive, adaptive, task-oriented, meaningful, and challenging exercises for stroke survivors (Laver et al., 2012).
As mentioned earlier, several virtual realities in rehabilitation interventions have been applied in the stroke population. However, the efficacy of VR rehabilitation interventions remains to be fully elucidated. In particular, studies on the qualitative and quantitative beneficial effects of VR on upper extremity function and independence in performing activities of daily living among patients with stroke are limited. The objectives of the present study were as follows: (a) to investigate the effectiveness of VR-based interventions in rehabilitation programs for restoring the upper extremity function of stroke survivors through a systematic review and (b) to examine the efficacy of VR-based interventions as part of a therapeutic rehabilitation program to improve upper limb function and independence in performing activities of daily living in stroke survivors by conducting a meta-analysis. Then, the VR-based interventions that are effective for improving upper limb function and independence in performing activities of daily living in stroke survivors were identified.[…]

Continue —> Virtual rehabilitation of upper extremity function and independence for stoke: a meta-analysis

, , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: