[Abstract + References] Motor stroke recovery after tDCS: a systematic review

Abstract

The purpose of the present study was to investigate the effects of transcranial direct current stimulation (tDCS) on motor recovery in adult patients with stroke, taking into account the parameters that could influence the motor recovery responses. The second aim was to identify the best tDCS parameters and recommendations available based on the enhanced motor recovery demonstrated by the analyzed studies. Our systematic review was performed by searching full-text articles published before February 18, 2019 in the PubMed database. Different methods of applying tDCS in association with several complementary therapies were identified. Studies investigating the motor recovery effects of tDCS in adult patients with stroke were considered. Studies investigating different neurologic conditions and psychiatric disorders or those not meeting our methodologic criteria were excluded. The main parameters and outcomes of tDCS treatments are reported. There is not a robust concordance among the study outcomes with regard to the enhancement of motor recovery associated with the clinical application of tDCS. This is mainly due to the heterogeneity of clinical data, tDCS approaches, combined interventions, and outcome measurements. tDCS could be an effective approach to promote adaptive plasticity in the stroke population with significant positive premotor and postmotor rehabilitation effects. Future studies with larger sample sizes and high-quality studies with a better standardization of stimulation protocols are needed to improve the study quality, further corroborate our results, and identify the optimal tDCS protocols.

References

  • Allman, C., Amadi, U., Winkler, A.M., Wilkins, L., Filippini, N., Kischka, U., Stagg, C.J., and Johansen-Berg, H. (2016). Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci. Transl. Med. 8, 330re1.PubMedCrossrefGoogle Scholar
  • Ameli, M., Grefkes, C., Kemper, F., Riegg, F.P., Rehme, A.K., Karbe, H., Fink, G.R., and Nowak, D.A. (2009). Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann. Neurol. 66, 298–309.PubMedCrossrefGoogle Scholar
  • Andrade, S.M., Batista, L.M., Nogueira, L.L., de Oliveira, E.A., de Carvalho, A.G., Lima, S.S., Santana, J.R., de Lima, E.C., and Fernández-Calvo, B. (2017a). Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial. Rehab. Res. Pract. 2017, 6842549.Google Scholar
  • Andrade, S.M., Ferreira, J.J.A., Rufino, T.S., Medeiros, G., Brito, J.D., da Silva, M.A., and Moreira, R.N. (2017b). Effects of different montages of transcranial direct current stimulation on the risk of falls and lower limb function after stroke. Neurol. Res. 39, 1037–1043.CrossrefGoogle Scholar
  • Bikson, M., Grossman, P., Thomas, C., Zannou, A.L., Jiang, J., Adnan, T., Mourdoukoutas, A.P., Kronberg, G., Truong, D., Boggio, P., et al. (2016). Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9, 641–661.CrossrefPubMedGoogle Scholar
  • Bolognini, N. and Vallar, G. (2015). Stimolare il cervello. Manuale di stimolazione cerebrale non invasiva (pp. 1–224). il Mulino.Google Scholar
  • Bolognini, N., Pascual-Leone, A., and Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehab. 6, 8.CrossrefGoogle Scholar
  • Bolognini, N., Vallar, G., Casati, C., Latif, L.A., El-Nazer, R., Williams, J., Banco, E., Macea, D.D., Tesio, L., Chessa, C., et al. (2011). Neurophysiological and behavioral effects of tDC combined with constraint-induced movement therapy in post stroke patients. Neurorehab. Neural Rep. 25, 819–829.CrossrefGoogle Scholar
  • Bortoletto, M., Rodella, C., Salvador, R., Miranda, P.C., and Miniussi, C. (2016). Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES). Brain Stimul. 9, 525–528.CrossrefPubMedGoogle Scholar
  • Bradnam, L.V., Stinear, C.M., Barber, P.A., and Byblow, W.D. (2012). Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb. Cortex 22, 2662–2671.PubMedCrossrefGoogle Scholar
  • Brunelin, J., Mondino, M., Gassab, L., Haesebaert, F., Gaha, L., Suaud-Chagny, M.F., Saoud, M., Mechri, A., and Poulet, E. (2012a). Examining transcranial direct current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am. J. Psychiatry 169, 719–724.CrossrefGoogle Scholar
  • Brunoni, A.R., Zanao, T.A., Ferrucci, R., Priori, A., Valiengo, L., de Oliveira, J.F., Boggio, P.S., Lotufo, P.A., Benseñor, I.M., and Fregni, F. (2013c). Bifrontal tDCS prevents implicit learning acquisition in antidepressant-free patients with major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 43, 146–150.CrossrefGoogle Scholar
  • Burke Quinlan, E., Dodakian, L., See, J., McKenzie, A., Le, V., Wojnowicz, M., Shahbaba, B., and Cramer, S.C. (2015). Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann. Neurol. 77, 132–145.CrossrefPubMedGoogle Scholar
  • Byblow, W.D., Stinear, C.M., Barber, P.A., Petoe, M.A., and Ackerley, S.J. (2015). Proportional recovery after stroke depends on corticomotor integrity. Ann. Neurol. 78, 848–859.CrossrefPubMedGoogle Scholar
  • Chang, M.C., Kim, D.Y., and Park, D.H. (2015). Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul. 8, 561–566.CrossrefPubMedGoogle Scholar
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. (Hillsdale, NJ: Erlbaum).Google Scholar
  • Coin, A., Najjar, M., Catanzaro, S., Orru, G., Sampietro, S., Sergi, G., Manzato, E., Perissinotto, E., Rinaldi, G., Sarti, S., et al. (2009). A retrospective pilot study on the development of cognitive, behavioral and functional disorders in a sample of patients with early dementia of Alzheimer type. Arch. Gerontol. Geriatr. 49, 35–38.CrossrefGoogle Scholar
  • Conti, C.L. and Nakamura-Palacios, E.M. (2013). Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of crack-cocaine addicts. Brain Stimul. 7, 130–132.PubMedGoogle Scholar
  • Da Costa Santos, C.M., de Mattos Pimenta, C.A., and Nobre, M.R. (2007). The PICO strategy for the research question construction and evidence search. Rev. Lat. Am. Enfermagem. 15, 508–511.PubMedCrossrefGoogle Scholar
  • De Vries, M.H., Barth, A.C., Maiworm, S., Knecht, S., Zwitserlood, P., and Flöel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J. Cognit. Neurosci. 22, 2427–2436.CrossrefGoogle Scholar
  • Di Lazzaro, V., Dileone, M., Capone, F., Pellegrino, G., Ranieri, F., Musumeci, G., Florio, L., Di Pino, G., and Fregni, F. (2014). Immediate and late modulation of interhemispheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimul. 7, 841–848.CrossrefGoogle Scholar
  • Feng, W., Wang, J., Chhatbar, P.Y., Doughty, C., Landsittel, D., Lioutas, V.A., and Schlaug, G. (2015). Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann. Neurol. 78, 860–870.CrossrefPubMedGoogle Scholar
  • Ferrucci, R., Mameli, F., Guidi, I., Mrakic-Sposta, S., Vergari, M., Marceglia, S., Cogiamanian, F., Barbieri, S., Scarpini, E., and Priori, A. (2008). Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71, 493–498.CrossrefPubMedGoogle Scholar
  • Figlewski, K., Blicher, J.U., Mortensen, J., Severinsen, K.E., Nielsen, J.F., and Andersen, H. (2017). Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy. Stroke 48, 229–232.PubMedCrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., Marcolin, M.A., Rigonatt, S.P., Silva, M.T., and Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30.PubMedCrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Lima, M.C., Ferreira, M.J., Wagner, T., Rigonatti, S.P., Castro, A.W., Souza, D.R., Riberto, M., Freedman, S.D., et al. (2006a). A sham controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122, 197–209.CrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Santos, M.C., Lima, M., Vieira, A.L., Rigonatti, S.P., Silva, M.T., Barbosa, E.R., Nitsche, M.A., and Pascual-Leone, A. (2006b). Non invasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 21, 1693–1702.CrossrefGoogle Scholar
  • Fregni, F., Gimenes, R., Valle, A.C., Ferreira, M.J., Rocha, R.R., Natalle, L., Bravo, R., Rigonatti, S.P., Freedman, S.D., Nitsche, M.A., et al. (2006c). A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 54, 3988–3998.CrossrefGoogle Scholar
  • Fusco, A., Assenza, F., Iosa, M., Izzo, S., Altavilla, R., Paolucci, S., and Vernieri, F. (2014). The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial. BioMed Res. Int. 2014, 547290.PubMedGoogle Scholar
  • Geroin, C., Picelli, A., Munari, D., Waldner, A., Tomelleri, C., and Smania, N. (2011). Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin. Rehabil. 25, 537–548.PubMedCrossrefGoogle Scholar
  • Gladwin, T.E., den Uyl, T.E., Fregni, F.F., and Wiers, R.W. (2012). Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci. Lett. 512, 33–37.CrossrefGoogle Scholar
  • Grefkes, C. and Fink, G.R. (2014). Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 13, 206–216.CrossrefPubMedGoogle Scholar
  • Hamoudi, M., Schambra, H.M., Fritsch, B., Schoechlin-Marx, A., Weiller, C., Cohen, L.G., and Reis, J. (2018). Transcranial direct current stimulation enhances motor skill learning but not generalization in chronic stroke. Neurorehabil. Neural Repair 32, 295–308.PubMedCrossrefGoogle Scholar
  • Hattie, J. (2009). Visible Learning: A Synthesis of Over 800 Meta-analyses Relating to Achievement (Park Square, Oxford: Rutledge).Google Scholar
  • Herrmann, C.S., Rach, S., Neuling, T., and Strüber, D. (2013). Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 7, 279.PubMedGoogle Scholar
  • Hesse, S., Waldner, A., Mehrholz, J., Tomelleri, C., Pohl, M., and Werner, C. (2011). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabil. Neural Repair 25, 838–846.PubMedCrossrefGoogle Scholar
  • Holman, L., Head, M.L., Lanfear, R., and Jennions, M.D. (2015). Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol. 13, e1002190.CrossrefPubMedGoogle Scholar
  • Horn, S.D., DeJong, G., Smout, R.J., Gassaway, J., James, R., and Conroy, B. (2005). Stroke rehabilitation patients, practice, and outcomes: is earlier and more aggressive therapy better? Arch. Phys. Med. Rehab. 86, 101–114.CrossrefGoogle Scholar
  • Horvath, J.C., Forte, J.D., and Carter, O. (2015a). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 8, 535–550.CrossrefGoogle Scholar
  • Horvath, J.C., Forte, J.D., and Carter, O. (2015b). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66, 213–236.CrossrefGoogle Scholar
  • Hoyer, E.H. and Celnik, P.A. (2011). Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor. Neurol. Neurosci. 29, 395–409.PubMedGoogle Scholar
  • Hummel, F.C. and Cohen, L.G. (2006). Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 5, 708–712.CrossrefPubMedGoogle Scholar
  • Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W.H., Gerloff, C., and Cohen, L.G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499.PubMedCrossrefGoogle Scholar
  • Hummel, F.C., Voller, B., Celnik, P., Floel, A., Giraux, P., Gerloff, C., and Cohen, L.G. (2006). Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci. 7, 73.CrossrefPubMedGoogle Scholar
  • Ilić, N.V., Dubljanin-Raspopović, E., Nedeljković, U., Tomanović-Vujadinović, S., Milanović, S.D., Petronić-Marković, I., and Ilić, T.V. (2016). Effects of anodal tDCS and occupational therapy on fine motor skill deficits in patients with chronic stroke. Restor. Neurol. Neurosci. 34, 935–945.PubMedGoogle Scholar
  • Ivanenko, Y.P., Poppele, R.E., and Lacquaniti, F. (2009). Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects. Brain Res. Bull. 78, 13–21.CrossrefPubMedGoogle Scholar
  • Khedr, E.M., Shawky, O.A., El-Hammady, D.H., Rothwell, J.C., Darwish, E.S., Mostafa, O.M., and Tohamy, A.M. (2013). Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial. Neurorehab. Neural Rep. 7, 592–601.Google Scholar
  • Kim, D.Y., Lim, J.Y., Kang, E.K., You, D.S., Oh, M.K., Oh, B.M., and Paik, N.J. (2010). Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am. J. Phys. Med. Rehabil. 89, 879–886.PubMedCrossrefGoogle Scholar
  • Koo, W.R., Jang, B.H., and Kim, C.R. (2018). Effects of anodal transcranial direct current stimulation on somatosensory recovery after stroke: a randomized controlled trial. Am. J. Phys. Med. Rehabil. 97, 507–513.CrossrefPubMedGoogle Scholar
  • Kwakkel, G. and Kollen, B.J. (2013). Predicting activities after stroke: what is clinically relevant? Int. J. Stroke 8, 25–32.CrossrefPubMedGoogle Scholar
  • Langhorne, P., Coupar, F., and Pollock, A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754.CrossrefPubMedGoogle Scholar
  • Lee, S.J. and Chun, M.H. (2014). Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehab. 95, 431–438.CrossrefGoogle Scholar
  • Lefaucheur, J.P., Antal, A., Ayache, S.S., Benninger, D.H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., et al. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 128, 56–92.CrossrefPubMedGoogle Scholar
  • Leon, D., Cortes, M., Elder, J., Kumru, H., Laxe, S., Edwards, D.J., Tormos, J.M., Bernabeu, M., and Pascual-Leone, A. (2017). tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor. Neurol. Neurosci. 35, 377–384.PubMedGoogle Scholar
  • Liew, S.L., Santarnecchi, E., Buch, E.R., and Cohen, L.G. (2014). Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front. Hum. Neurosci. 8, 378.PubMedGoogle Scholar
  • Lindenberg, R., Renga, V., Zhu, L.L., Nair, D., and Schlaug, G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75, 2176–2184.PubMedCrossrefGoogle Scholar
  • Lopez-Espuela, F., Zamorano, J.D.P., Ramírez-Moreno, J.M., Jiménez-Caballero, P.E., Portilla-Cuenca, J.C., Lavado-García, J.M., and Casado-Naranjo, I. (2015). Determinants of quality of life in stroke survivors after 6 months, from a comprehensive stroke unit: a longitudinal study. Biol. Res. Nurs. 17, 461–468.CrossrefGoogle Scholar
  • Lüdemann-Podubecká, J., Bösl, K., Rothhardt, S., Verheyden, G., and Nowak, D.A. (2014). Transcranial direct current stimulation for motor recovery of upper limb function after stroke. Neurosci. Biobehav. Rev. 47, 245–259.PubMedCrossrefGoogle Scholar
  • Marshall, L., Molle, M., Hallschmid, M., and Born, J. (2004). Transcranial direct current stimulation during sleep improves declarative memory. J. Neurosci. 24, 9985.CrossrefPubMedGoogle Scholar
  • Mazzoleni, S., Tran, V.D., Iardella, L., Dario, P., and Posteraro, F. (2017). Randomized, sham-controlled trial based on transcranial direct current stimulation and wrist robot-assisted integrated treatment on subacute stroke patients: intermediate results. In: 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 555–560. doi:10.1109/icorr.2017.8009306.Google Scholar
  • Menezes, I.S., Cohen, L.G., Mello, E.A., Machado, A.G., Peckham, P.H., Anjos, S.M., Siqueira, I.L., Conti, J., Plow, E.B., and Conforto, A.B. (2018). Combined brain and peripheral nerve stimulation in chronic stroke patients with moderate to severe motor impairment. Neuromodulation 21, 176–183.CrossrefPubMedGoogle Scholar
  • Miranda, P.C., Lomarev, M., and Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629.PubMedCrossrefGoogle Scholar
  • Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Int. Med. 151, 264–269.CrossrefGoogle Scholar
  • Nicolo, P., Magnin, C., Pedrazzini, E., Plomp, G., Mottaz, A., Schnider, A., and Guggisberg, A.G. (2018). Comparison of neuroplastic responses to cathodal transcranial direct current stimulation and continuous theta burst stimulation in subacute stroke. Arch. Phys. Med. Rehab. 99, 862–872.CrossrefGoogle Scholar
  • Nitsche, M.A. and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639.CrossrefPubMedGoogle Scholar
  • Nitsche, M.A. and Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901.PubMedCrossrefGoogle Scholar
  • Nitsche, M.A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., and Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 15, 619–626.PubMedCrossrefGoogle Scholar
  • Nitsche, M.A., Seeber, A., Frommann, K., Klein, C.C., Rochford, C., Nitsche, M.S., Fricke, K., Liebetanz, D., Lang, N., Antal, A., et al. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 568, 291–303.CrossrefPubMedGoogle Scholar
  • Nitsche, M.A., Kuo, M.F., Karrasch, R., Wächter, B., Liebetanz, D., and Paulus, W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol. Psychiatry 66, 503–508.CrossrefPubMedGoogle Scholar
  • Nowak, D.A., Bösl, K., Podubeckà, J., and Carey, J.R. (2010). Noninvasive brain stimulation and motor recovery after stroke. Restor. Neurol. Neurosci. 28, 531–544.PubMedGoogle Scholar
  • Nudo, R.J. and Milliken, G.W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol. 75, 2144–2149.PubMedCrossrefGoogle Scholar
  • Platz, T. (2004). Impairment-oriented training (IOT): scientific concept and evidence-based treatment strategies. Restor. Neurol. Neurosci. 22, 301–315.PubMedGoogle Scholar
  • Plow, E.B., Carey, J.R., Nudo, R.J., and Pascual-Leone, A. (2009). Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal. Stroke 40, 1926–1931.PubMedCrossrefGoogle Scholar
  • Polanía, R., Nitsche, M.A., and Paulus, W. (2011). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapping 32, 1236–1249.CrossrefGoogle Scholar
  • Priori, A., Berardelli, A., Rona, S., Accornero, N., and Manfredi, M. (1998). Polarization of the human motor cortex through the scalp. Neuroreport 9, 2257–2260.CrossrefPubMedGoogle Scholar
  • Rossi, C., Sallustio, F., Di Legge, S., Stanzione, P., and Koch, G. (2013). Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur. J. Neurol. 20, 202–204.CrossrefPubMedGoogle Scholar
  • Saeys, W., Vereeck, L., Lafosse, C., Truijen, S., Wuyts, F., and Van De Heyning, P. (2015). Transcranial direct current stimulation in the recovery of postural control after stroke: a pilot study. Disabil. Rehabil. 37, 1–7.Google Scholar
  • Sattler, V., Acket, B., Raposo, N., Thalamas, C., Loubinoux, I., Chollet, F., and Simonetta-Moreau, M. (2015). Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke. Neurorehab. Neural Rep. 29, 743–754.CrossrefGoogle Scholar
  • Seo, H.G., Lee, W.H., Lee, S.H., Yi, Y., Kim, K.D., and Oh, B.M. (2017). Robotic-assisted gait training combined with transcranial direct current stimulation in chronic stroke patients: a pilot double-blind, randomized controlled trial. Restor. Neurol. Neurosci. 35, 527–536.PubMedGoogle Scholar
  • Shekhawat, G.S., Searchfield, G.D., and Stinear, C.M. (2013a). Randomized trial of transcranial direct current stimulation and hearing aids for tinnitus management. Neurorehab. Neural Rep. 28, 410–419.Google Scholar
  • Simonetti, D., Zollo, L., Milighetti, S., Miccinilli, S., Bravi, M., Ranieri, F., Magrone, G., Guglielmelli, E., Di Lazzaro, V., and Sterzi, S. (2017). Literature review on the effects of tDCS coupled with robotic therapy in post stroke upper limb rehabilitation. Front. Hum. Neurosci. 11, 268.CrossrefPubMedGoogle Scholar
  • Stinear, C.M. and Byblow, W.D. (2014). Predicting and accelerating motor recovery after stroke. Curr. Opin. Neurol. 27, 624–630.PubMedGoogle Scholar
  • Straudi, S., Fregni, F., Martinuzzi, C., Pavarelli, C., Salvioli, S., and Basaglia, N. (2016). tDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke. BioMed Res. Int. 2016, 8.Google Scholar
  • Suzuki, Y., and Naito, E. (2012). Neuro-modulation in dorsal premotor cortex facilitates human multi-task ability. J. Behav. Brain Sci. 2, 372.CrossrefGoogle Scholar
  • Terney, D., Chaieb, L., Moliadze, V., Antal, A., and Paulus, W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 28, 14147–14155.CrossrefPubMedGoogle Scholar
  • Viana, R.T., Laurentino, G.E., Souza, R.J., Fonseca, J.B., Silva Filho, E.M., Dias, S.N., Teixeira-Salmela, L.F., and Monte-Silva, K.K. (2014). Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. Neurorehabilitation 34, 437–446.PubMedGoogle Scholar
  • Wang, Y., Shen, Y., Cao, X., Shan, C., Pan, J., He, H., Ma, Y., and Yuan, T.F. (2016). Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates cue-induced craving for heroin. J. Psychiatry Res. 79, 1–3.CrossrefGoogle Scholar
  • Wu, D., Qian, L., Zorowitz, R.D., Zhang, L., Qu, Y., and Yuan, Y. (2013). Effects on decreasing upper-limb post stroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study. Arch. Phys. Med. Rehab. 94, 1–8.CrossrefGoogle Scholar
  • Zehr, E.P. (2005). Neural control of rhythmic human movement: the common core hypothesis. Exercise Sport Sci. Rev. 33, 54–60.Google Scholar
  • Ziemann, U., Paulus, W., Nitsche, M.A., Pascual-Leone, A., Byblow, W.D., Berardelli, A., Siebner, H.R., Classen, J., Cohen, L.G., and Rothwell, J.C. (2008). Consensus: motor cortex plasticity protocols. Brain Stimul. 1, 164–182.CrossrefPubMedGoogle Scholar

via Motor stroke recovery after tDCS: a systematic review : Reviews in the Neurosciences

, , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: