[Abstract] A novel backstepping adaptive impedance control for an upper limb rehabilitation robot

Abstract

Stroke contributes to hemiplegia, which severely reduces people’s ability to perform activities of daily living. Due to the insufficiency of medical resources, there is an urgent need for home-based rehabilitation robot. In this paper, we design a home-based upper limb rehabilitation robot, based on the principle that three axes intersect at one point. A three-dimensional force sensor is equipped at the end of the manipulator to measure the interaction forces between the affected upper limb and the robot during rehabilitation training. The virtual rehabilitation training environment is designed to improve the enthusiasm of patients. A backstepping adaptive fuzzy based impedance control method is proposed for the home-based upper limb rehabilitation robot to prevent secondary injury of the affected limb. The adaptive law is introduced, and the backstepping adaptive fuzzy based impedance controller is proved in details. Experiments results demonstrate the effectiveness of the proposed control method.

 

via A novel backstepping adaptive impedance control for an upper limb rehabilitation robot – ScienceDirect

, , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: