[Abstract + References] Upper-Limb Exoskeletons for Stroke Rehabilitation – Conference paper

Abstract

Upper-limb exoskeletons provide high-intensity, repetitive, task-specific, interactive and individualized training, making effective use of neuroplasticity for functional recovery in neurological patients. Most exoskeletons have robot axes aligned with the anatomical axes of the subject and provide direct control of individual joints. Recently, novel mechanical structures and actuation mechanisms have been proposed, but still result in bulky and heavy exoskeletons, limiting their applicability into clinical practice. Technological efforts are needed to promote light and wearable exoskeletons that implement active-assistive controllers, providing “assisted-as-needed” rehabilitation therapy, towards patient’s motivation and self-esteem. An overview of upper-limb exoskeletons, including mechanical design and control algorithms, will be provided. Special focus will be put on the current evidence about the efficacy of wearable robotic technologies on motor recovery and about other therapies that can be combined with exoskeletons to improve their therapeutic effects.

References

  1. 1.
    Ambrosini, E., et al.: A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. J. Electromyogr. Kinesiol. 24(2), 307–317 (2014). Official Journal of the International Society of Electrophysiological KinesiologyGoogle Scholar
  2. 2.
    Basteris, A., et al.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. NeuroEng. Rehabil. 11(1), 111 (2014)Google Scholar
  3. 3.
    Bertani, R., et al.: Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol. Sci. 38(9), 1561–1569 (2017)Google Scholar
  4. 4.
    Calanca, A., et al.: A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans. Mechatron. 21(2), 613–624 (2016)Google Scholar
  5. 5.
    Chang, W.H., Kim, Y.-H.: Robot-assisted therapy in stroke rehabilitation. J. Stroke 15(3), 174–181 (2013)Google Scholar
  6. 6.
    Gandolla, M., et al.: The neural correlates of long-term carryover following functional electrical stimulation for stroke. Neural Plast. 2016, 1–13 (2016)Google Scholar
  7. 7.
    Grimm, F., et al.: Closed-loop task difficulty adaptation during virtual reality reach-to-grasp training assisted with an exoskeleton for stroke rehabilitation. Front. Neurosci. 10, 518 (2016)Google Scholar
  8. 8.
    Howlett, O.A., et al.: Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch. Phys. Med. Rehabil. 96(5), 934–943 (2015)Google Scholar
  9. 9.
    Immick, N., et al.: Hybrid robotic system for arm training after stroke: preliminary results of a randomized controlled trial. In: International Conference on NeuroRehabilitation, pp. 94–97 (2019)Google Scholar
  10. 10.
    Islam, M.R., et al.: A brief review on robotic exoskeletons for upper extremity rehabilitation to find the gap between research prototype and commercial type. Adv. Robot. Autom. 06(03), 1–12 (2018)Google Scholar
  11. 11.
    Kim, B., Deshpande, A.D.: An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. Int. J. Robot. Res. 36(4), 414–435 (2017)Google Scholar
  12. 12.
    Krebs, H.I., et al.: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 327–335 (2007)Google Scholar
  13. 13.
    Langhorne, P., et al.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)Google Scholar
  14. 14.
    Laver, K.E., et al.: Virtual reality for stroke rehabilitation. In: Laver, K.E. (ed.) Cochrane Database of Systematic Reviews. Wiley, Chichester (2011)Google Scholar
  15. 15.
    Lawrence, E.S., et al.: Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 32(6), 1279–1284 (2001)Google Scholar
  16. 16.
    Lo, H.S., Xie, S.Q.: Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med. Eng. Phys. 34(3), 261–268 (2012)Google Scholar
  17. 17.
    Mazzoleni, S., et al.: Combining upper limb robotic rehabilitation with other therapeutic approaches after stroke: current status, rationale, and challenges. BioMed Res. Int. 2017, 1–11 (2017)Google Scholar
  18. 18.
    Meadmore, K.L., et al.: Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. J. Neuroeng. Rehabil. 9, 32 (2012)Google Scholar
  19. 19.
    Mehrholz, J., et al.: Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. (11), CD006876 (2015)Google Scholar
  20. 20.
    Nef, T., et al.: ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)Google Scholar
  21. 21.
    Pedrocchi, A., et al.: MUNDUS project: Multimodal Neuroprosthesis for Daily Upper limb Support. J. NeuroEng. Rehabil. 10(1), 66 (2013)Google Scholar
  22. 22.
    Pirondini, E., et al.: Evaluation of the effects of the arm light exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. J. NeuroEng. Rehabil. 13(1), 1–21 (2016)Google Scholar
  23. 23.
    Proietti, T., et al.: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016)Google Scholar
  24. 24.
    Qian, Q., et al.: Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Front. Neurol. 8, 447 (2017)Google Scholar
  25. 25.
    Rong, W., et al.: A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. J. NeuroEng. Rehabil. 14(1), 34 (2017)Google Scholar
  26. 26.
    Sensinger, J.W., Weir, R.F.F.: Improvements to series elastic actuators. In: Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2006 (2007)Google Scholar
  27. 27.
    Stienen, A.H.A., et al.: Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Rob. 25(3), 628–633 (2009)Google Scholar
  28. 28.
    Veerbeek, J.M., et al.: Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil. Neural Repair 31(2), 107–121 (2017)Google Scholar
  29. 29.
    Zhang, C., et al.: Robotic approaches for the rehabilitation of upper limb recovery after stroke. Int. J. Rehabil. Res. 40(1), 19–28 (2017)Google Scholar

via Upper-Limb Exoskeletons for Stroke Rehabilitation | SpringerLink

, , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: