[Abstract] A 5-Degrees-of-Freedom Lightweight Elbow-Wrist Exoskeleton for Forearm Fine-Motion Rehabilitation

Abstract

Exoskeleton robots have been demonstrated to effectively assist the rehabilitation of patients with upper or lower limb disabilities. To make exoskeletons more accessible to patients, they need to be lightweight and compact without major performance tradeoffs. Existing upper-limb exoskeletons focus on assistance with coarse-motion of the upper arm while forearm fine-motion rehabilitation is often ignored. This paper presents an elbow-wrist exoskeleton with five degrees-of-freedom (DoFs). Using geared bearings, slider crank mechanisms, and a spherical mechanism for the wrist and elbow modules, this exoskeleton can provide 5-DoF rotary motion forearm assistance. The optimized exoskeleton dimensions allow sufficient rotation output while the motors are placed parallel to the forearm and elbow joint. Thus compactness and less inertia loading can be achieved. Linear and rotary series elastic actuators (SEAs) with high torque-to-weight ratios are proposed to accurately measure and control interaction force and impedance between exoskeleton and forearm. The resulting 3-kg exoskeleton can be used alone or easily in combination with other exoskeleton robots to provide various robot-aided upper limb rehabilitation.

via A 5-Degrees-of-Freedom Lightweight Elbow-Wrist Exoskeleton for Forearm Fine-Motion Rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: