[ARTICLE] A combination of multimodal physical exercises in real and virtual environments for individuals after chronic stroke: study protocol for a randomized controlled trial – Full Text

Abstract

Background

Multimodal physical exercises already have well-established benefits for the post-stroke population that influence gait functional capacity, balance, gait, cognition, and quality of life. This type of intervention can be performed in both real and virtual environments. Considering the characteristics of both environments, it is questioned to what extent the combination of interventions in real and virtual environments could result in improvement in post-stroke impairments.

Methods/design

We will conduct a randomized clinical trial with three groups: a real multimodal group (RMG), a virtual multimodal group (VMG), and a combined multimodal group (CMG). It was estimated that we will need a sample of 36 participants (12 per group). RMG individuals will only perform multimodal physical exercises in a real environment two times per week for 60 min per session for 15 weeks. VMG individuals will perform exercises of the same duration over the same time frame but only in a virtual environment. CMG individuals will hold a weekly session in a real environment and another weekly session in virtual environment. The primary outcome measure will be health-related quality of life, evaluated using the Stroke Impact Scale; effects on cognition (Montreal Cognitive Assessment), balance (Berg Balance Scale), mobility (Timed Up & Go), self-selected gait speed (10-meter walk test), and gait functional capacity (6-min walk test) will be investigated as secondary outcome measures. Participants will be evaluated before the beginning of the intervention, immediately after the end of the intervention, and at 1-month follow-up without exercise. If the data meet the assumptions of the parametric analysis, the results will be evaluated by analysis of variance (3 × 3) for the group factor, with repeated measures while taking into account the time factor. The post hoc Tukey test will be used to detect differences (α = 0.05).

Discussion

This study represents the first clinical trial to include three groups considering physical exercise in real and virtual environments, isolated and combined, that counterbalances the intensity and volume of training in all groups. This study also includes a control of progression in all groups along the 15-week intervention. The outcome measures are innovative because, according to International Classification of Functioning, Disability and Health, activity and participation are the targets for effectiveness evaluation.

Background

The diverse impairments observed after a stroke, associated with the reduction of intrinsic motivation and the presence of preexisting or acquired comorbidities, lead to a vicious cycle of decreased activity and increased exercise intolerance. As a consequence, secondary complications, such as reduced cardiorespiratory fitness, muscle atrophy, osteoporosis, and circulation impairment in the lower extremities, may occur and generate greater dependence in the activities of daily living and impact the social interactions of these individuals [1].

Different modalities of physical exercises already have well-established benefits for individuals after chronic stroke, including repercussions for cardiovascular capacity [2], muscle strength [34], balance [56], gait [78], and cognition [9]. In order to maximize the effects of the exercises, there is a tendency to investigate the effects of multimodal protocols. According to Saunders et al. [10], a multimodal protocol refers to interventions based on the combination of physical exercises of different components, such as cardiorespiratory, muscular strength, and flexibility.

Multimodal physical exercises can be performed in both real and virtual reality environments. The interventions performed in real environments are the most commonly used in the clinical context. Characteristics of interventions performed in real environments include a high interactive relationship between the professional and the patient, high ecological validity, the possibility of individual or group applications, not requiring technological resources, and the ability to be applied in the home according to each patient’s needs.

Conversely, virtual reality-based interventions present features such as an environment rich in visual and auditory information with immediate and multisensory feedback [11], real-time simulation of tasks or environments, three-dimensional interactive and immersive experiences, a computerized interface, active and safe patient participation [12], and the ability to provide information with an external focus of attention [1314]. In a systematic review, Laver et al. [15] found that the addition of virtual reality to conventional methods resulted in improved upper limb function. However, they also found insufficient evidence regarding the superiority of virtual reality for promoting walking speed and balance. They were unable to pool results related to cognition, improvement of social participation, and health-related quality of life (HRQoL) because few studies included assessments of cognition and HRQoL to achieve meta-analysis requirements for these outcomes [15]. Therefore, these parameters should be investigated in future studies; in addition, the authors also emphasized the need for training lasting longer than 15 h of intervention and that future studies should set the number of participants screened for eligibility criteria.

Considering the characteristics of both environments, it is questioned to what extent the combination of interventions in the real and virtual environments could result in improvement in post-stroke impairments. There are few studies that have sought to find answers to this question. In the Shin et al. [16] study, the control group performed 1 h of occupational therapy per session, and the experimental group performed 30 min of occupational therapy plus 30 min of virtual reality. The results showed positive effects in both groups, except for the domain related to the limitations due to physical problems measured by the Short Form Health Survey scores, in which experimental group (EG) obtained greater benefits. Rajaratnam et al. [17] found positive results for balance and mobility measurements for the group that performed 40 min of conventional therapy plus 20 min of self-directed virtual reality balance training per session, compared with the control group, which performed 60 min of conventional therapy.

Saposnik and Levin [18] claimed there were few publications regarding the combination of multimodal physical exercises in real and virtual environments. Most of the existing studies did not investigate long-term effects, including follow-up, and added intervention time to the experimental groups, which provided them with an advantage in the total intervention time received. In addition, there is an important diversity in the literature regarding the profile characteristics of individuals with stroke, considering acute, subacute, and chronic patients. Thus, the results found in the previous studies [19,20,21,22,23,24] do not allow consistent conclusions to be made about the effects of the combination of multimodal exercises in real and virtual environments in individuals after chronic stroke.

This study seeks to answer whether the combination of multimodal physical exercises in real and virtual environments could bring additional benefits to the quality of life, cognition, gait, and balance of individuals after chronic stroke. We also intend to clarify the effects of interventions with multimodal physical exercises when performed only in a real environment or only in a virtual environment and to investigate whether the possible effects remain after 1 month without participating in physical exercises.

This study aims to investigate the effects of a protocol of multimodal physical exercises in real and virtual environments for individuals who have survived a stroke.[…]

 

Continue —-> A combination of multimodal physical exercises in real and virtual environments for individuals after chronic stroke: study protocol for a randomized controlled trial | Trials | Full Text

figure2

Virtual reality games selected for the odd-game sessions and individuals’ practice

, , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: