[ARTICLE] Randomized Feasibility Trial of a Novel, Integrative, and Intensive Virtual Rehabilitation Program for Service Members Post-Acquired Brain Injury – Full Text

Abstract

Introduction

Acquired Brain Injury, whether resulting from Traumatic brain injury (TBI) or Cerebral Vascular Accident (CVA), represent major health concerns for the Department of Defense and the nation. TBI has been referred to as the “signature” injury of recent U.S. military conflicts in Iraq and Afghanistan – affecting approximately 380,000 service members from 2000 to 2017; whereas CVA has been estimated to effect 795,000 individuals each year in the United States. TBI and CVA often present with similar motor, cognitive, and emotional deficits; therefore the treatment interventions for both often overlap. The Defense Health Agency and Veterans Health Administration would benefit from enhanced rehabilitation solutions to treat deficits resulting from acquired brain injuries (ABI), including both TBI and CVA. The purpose of this study was to evaluate the feasibility of implementing a novel, integrative, and intensive virtual rehabilitation system for treating symptoms of ABI in an outpatient clinic. The secondary aim was to evaluate the system’s clinical effectiveness.

Materials and Methods

Military healthcare beneficiaries with ABI diagnoses completed a 6-week randomized feasibility study of the BrightBrainer Virtual Rehabilitation (BBVR) system in an outpatient military hospital clinic. Twenty-six candidates were screened, consented and randomized, 21 of whom completed the study. The BBVR system is an experimental adjunct ABI therapy program which utilizes virtual reality and repetitive bilateral upper extremity training. Four self-report questionnaires measured participant and provider acceptance of the system. Seven clinical outcomes included the Fugl-Meyer Assessment of Upper Extremity, Box and Blocks Test, Jebsen-Taylor Hand Function Test, Automated Neuropsychological Assessment Metrics, Neurobehavioral Symptom Inventory, Quick Inventory of Depressive Symptomatology-Self-Report, and Post Traumatic Stress Disorder Checklist- Civilian Version. The statistical analyses used bootstrapping, non-parametric statistics, and multilevel/hierarchical modeling as appropriate. This research was approved by the Walter Reed National Military Medical Center and Uniformed Services University of the Health Sciences Institutional Review Boards.

Results

All of the participants and providers reported moderate to high levels of utility, ease of use and satisfaction with the BBVR system (x- = 73–86%). Adjunct therapy with the BBVR system trended towards statistical significance for the measure of cognitive function (ANAM [x- = −1.07, 95% CI −2.27 to 0.13, p = 0.074]); however, none of the other effects approached significance.

Conclusion

This research provides evidence for the feasibility of implementing the BBVR system into an outpatient military setting for treatment of ABI symptoms. It is believed these data justify conducting a larger, randomized trial of the clinical effectiveness of the BBVR system.

INTRODUCTION

Frequent use of improvised explosive devices (IEDs) in Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) resulted in traumatic brain injury (TBI) being called the signature injury of recent conflicts.1 According to Department of Defense (DoD) reports, 379,519 service members received a TBI diagnosis from 2000 to 2017.2 Traumatic brain injuries are a subtype of acquired brain injury (ABI), which refers to any post-natal brain injury.3 Acquired brain injuries commonly present with symptoms of cognitive and motor impairment, and emotional instability that may persist for years and affect performance of activities of daily living (ADLs).4,5 Though survival rates of mild TBI (mTBI) are high, the resulting diminished quality of life calls for a greater focus on long-term TBI rehabilitative care.6

Another category of ABI, Cerebral Vascular Accident (CVA), often presents with similar impairments, such as diminished memory, upper extremity weakness and spasms, and depression.7–9 Moreover, those who have experienced a TBI are also at higher risk of CVA than those who have not.10,11 The majority of neurological recovery after TBI and CVA typically occurs within the first 6 months of injury, but training factors such as intensity, repetition, duration, patient motivation, and patient engagement may impact long-term treatment effectiveness on individuals in the chronic phase.12–16

Traditional rehabilitation protocols for individual’s post-ABI, such as proprioceptive neuromuscular facilitation (PNF), are widely recognized but underutilized by therapists.17 Additionally, hands-on interventions, while well known, have limited evidence supporting their success with chronic ABI rehabilitation.18 With technological advancements it may be possible to link the traditional therapies with progressive opportunities, while also increasing patient engagement and decreasing provider burden.

One method of post-ABI rehabilitation with growing clinical acceptance is virtual reality (VR). Virtual reality is defined as a synthetic world that responds in real time to changes in user input, creating a constantly-engaging environment in which users participate.19 Virtual rehabilitation utilizes VR in a variety of clinically relevant domains,20 and offers a unique platform for ABI rehabilitation by engaging patients in appropriately challenging tasks.21 It provides the needed intensity of care, can unify treatment in an integrative rehabilitation, and can involve bimanual interactions engaging both hemispheres.22 A review of studies evaluating improvements in cognitive domains (e.g., executive function) indicates that computer-based cognitive rehabilitation programs which are tailored to the participant’s abilities often produce greater results compared to non-personalized cognitive rehabilitation computer programs.23

BrightBrainer Virtual Rehabilitation System

The BrightBrainer Virtual Rehabilitation (BBVR) program is a computer-based VR platform that utilizes real-time bimanual interaction for the purpose of increasing cognitive engagement compared to simple mouse, or single finger touch interaction. Bilateral training has been found to promote improved motor functioning for people who have experienced ABI, above and beyond unilateral training.24,25 This system facilitates split attention training (focusing), task sequencing (alternating actions between arms), hand-eye coordination, and dual tasking through use of simultaneous cognitive and motor challenges. Though the BBVR system was originally developed for geriatric patients with CVA, the use of adaptable games, bimanual tasks, and repetition may make it translatable as a tool for ABI treatment in a military population.26

While literature on VR therapy post-ABI is abundant, many of the systems either focus only on rehabilitation of one aspect of post-ABI deficits,27 or are too physically large to implement in most clinics.28 The BBVR system is unique because it combines cognitive and physical training in a compact, adaptive VR system which can be implemented largely unobtrusively into clinical space. This pilot study implemented the BBVR system within a Military Treatment Facility’s (MTF) outpatient occupational therapy clinic as a 6-week intervention for participants with ABI. The primary aim was to evaluate the feasibility of integrating the BBVR system into the clinic for both 1-on-1 provider-participant interaction and concurrent treatment in which 1 provider oversees 2 participants at a time. The 3 secondary aims were: (1) to evaluate the preliminary clinical effectiveness of the BBVR system in terms of motor function, cognitive performance, and behavioral/emotional symptoms; (2) to evaluate the dose-response effect of the BBVR system; and (3) to evaluate the correlation between participant-level BBVR game performance and longitudinal change in clinical outcomes.

Continue —-> Randomized Feasibility Trial of a Novel, Integrative, and Intensive Virtual Rehabilitation Program for Service Members Post-Acquired Brain Injury | Military Medicine | Oxford Academic

, , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: