[Abstract + References] A Feasibility Study on the Application of Virtual Reality Technology for the Rehabilitation of Upper Limbs After Stroke – Conference paper

Abstract

The purpose of this study was to explore the clinical feasibility of virtual reality (VR) for the rehabilitation of upper limbs of stroke. In this study, it was found and suggested that future research should focus on the content design and application of VR rehabilitation games. While using VR to increase the interestingness of rehabilitation, one can also integrate VR and other technologies to achieve complementary benefits. In addition, in terms of the design of VR rehabilitation games, it was suggested that VR rehabilitation game researchers investigate the needs of the target users and design VR games that meet the needs of the target users in future work. Finally, this study demonstrates the clinical feasibility of applying VR technology for the rehabilitation of upper limbs after stroke, as well as highlights the aspects that still need to be addressed by researchers. These aspects are important targets of designing a VR system suitable for stroke upper limb rehabilitation.

References

1.
Nichols-Larsen, D.S., et al.: Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 36(7), 1480–1484 (2005).  https://doi.org/10.1161/01.STR.0000170706.13595.4fCrossRefGoogle Scholar
2.
Heller, A., et al.: Arm function after stroke: measurement and recovery over the first three months. J. Neurol. Neurosurg. Psychiatry 50(6), 714–719 (1987).  https://doi.org/10.1136/jnnp.50.6.714CrossRefGoogle Scholar
3.
Wade, D.T., et al.: The hemiplegic arm after stroke: measurement and recovery. J. Neurol. Neurosurg. Psychiatry 46(6), 521–524 (1983).  https://doi.org/10.1136/jnnp.46.6.521CrossRefGoogle Scholar
4.
Sunderland, A., et al.: Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J. Neurol. Neurosurg. Psychiatry 52(11), 1267–1272 (1989).  https://doi.org/10.1136/jnnp.52.11.1267CrossRefGoogle Scholar
5.
Maclean, N.: A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc. Sci. 12 (2000)Google Scholar
6.
Langhorne, P., et al.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009).  https://doi.org/10.1016/S1474-4422(09)70150-4CrossRefGoogle Scholar
7.
Hesse, S., et al.: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 84(6), 915–920 (2003).  https://doi.org/10.1016/S0003-9993(02)04954-7CrossRefGoogle Scholar
8.
Rose, F.D., Attree, E.A., Johnson, D.A.: Virtual reality: an assistive technology in neurological rehabilitation. Curr. Opin. Neurol. 9(6), 461–467 (1996)CrossRefGoogle Scholar
9.
Lohse, K., et al.: Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J. Neurol. Phys. Therapy 37(4), 166–175 (2013).  https://doi.org/10.1097/NPT.0000000000000017CrossRefGoogle Scholar
10.
Trombetta, M., et al.: Motion Rehab AVE 3D: a VR-based exergame for post-stroke rehabilitation. Comput. Methods Programs Biomed. 151, 15–20 (2017).  https://doi.org/10.1016/j.cmpb.2017.08.008CrossRefGoogle Scholar
11.
Saposnik, G., Levin, M.: Virtual reality in stroke rehabilitation. Stroke 42(5), 1380–1386 (2011)CrossRefGoogle Scholar
12.
Burdea, G.C., Coiffet, P.: Virtual Reality Technology, 2nd edn. Wiley, New York (2003)Google Scholar
13.
Shirzad, N., Van der Loos, H.F.M.: Error amplification to promote motor learning and motivation in therapy robotics. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, pp. 3907–3910. IEEE (2012).  https://doi.org/10.1109/EMBC.2012.6346821
14.
Burke, J.W., et al.: Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25(12), 1085–1099 (2009).  https://doi.org/10.1007/s00371-009-0387-4CrossRefGoogle Scholar
15.
Mirelman, A., et al.: Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 40(1), 169–174 (2009).  https://doi.org/10.1161/STROKEAHA.108.516328CrossRefGoogle Scholar
16.
Jang, S.H., et al.: Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch. Phys. Med. Rehabil. 86(11), 2218–2223 (2005).  https://doi.org/10.1016/j.apmr.2005.04.015CrossRefGoogle Scholar
17.
Laver, K.E., et al.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. (2017).  https://doi.org/10.1002/14651858.CD008349.pub4CrossRefGoogle Scholar
18.
Hatem, S.M., et al.: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. 10, 442 (2016)CrossRefGoogle Scholar
19.
Jiang, T.T., et al.: Analysis of virtual environment haptic robotic systems for a rehabilitation of post-stroke patients. In: 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, pp. 738–742. IEEE (2017).  https://doi.org/10.1109/ICIT.2017.7915451
20.
Díaz, I., et al.: Lower-limb robotic rehabilitation: literature review and challenges. J. Robot. 2011, 1–11 (2011).  https://doi.org/10.1155/2011/759764CrossRefGoogle Scholar
21.
Krpič, A., et al.: Telerehabilitation: remote multimedia-supported assistance and mobile monitoring of balance training outcomes can facilitate the clinical staff’s effort. Int. J. Rehabil. Res. 36(2), 162–171 (2013).  https://doi.org/10.1097/MRR.0b013e32835dd63bCrossRefGoogle Scholar
22.
Kairy, D., et al.: Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient’s home: study protocol of a randomized clinical trial. Contemp. Clin. Trials 47, 49–53 (2016).  https://doi.org/10.1016/j.cct.2015.12.006CrossRefGoogle Scholar
23.
Shih, J.J., et al.: Brain-computer interfaces in medicine. Mayo Clin. Proc. 87(3), 268–279 (2012).  https://doi.org/10.1016/j.mayocp.2011.12.008CrossRefGoogle Scholar
24.
Veras, M., et al.: Scoping review of outcome measures used in telerehabilitation and virtual reality for post-stroke rehabilitation. J. Telemed. Telecare 23(6), 567–587 (2016).  https://doi.org/10.1177/1357633×16656235CrossRefGoogle Scholar
25.
Li, B.J., Li, F.: Application progress of virtual reality rehabilitation technology in upper limb dysfunction after stroke. Chin. J. Contemp. Neurol. Neurosurg. 17, 245–248 (2017)Google Scholar
26.
Cho, S., et al.: Development of virtual reality proprioceptive rehabilitation system for stroke patients. Comput. Methods Programs Biomed. 113(1), 258–265 (2014).  https://doi.org/10.1016/j.cmpb.2013.09.006CrossRefGoogle Scholar
27.
Harley, L., Robertson, S., Gandy, M., Harbert, S., Britton, D.: The design of an interactive stroke rehabilitation gaming system. In: Jacko, J.A. (ed.) HCI 2011. LNCS, vol. 6764, pp. 167–173. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21619-0_22CrossRefGoogle Scholar
28.
Shi, P., et al.: A virtual reality training system based on upper limb exoskeleton rehabilitation robot. In: i-CREATe 2018: Proceedings of the 12th International Convention on Rehabilitation Engineering and Assistive Technology, pp. 138–141 (2018)Google Scholar
29.
Cziksentmihalyi, M.: Flow – The Psychology of Optimal Experience (1990)Google Scholar
30.
Sweetser, P., Wyeth, P.: GameFlow: a model for evaluating player enjoyment in games. Comput. Entertain. 3(3) (2005).  https://doi.org/10.1145/1077246.1077253
31.
Flores, E., et al.: Improving patient motivation in game development for motor deficit rehabilitation. In: Proceedings of the 2008 International Conference in Advances on Computer Entertainment Technology – ACE 2008, Yokohama, Japan, p. 381. ACM Press (2008).  https://doi.org/10.1145/1501750.1501839

via A Feasibility Study on the Application of Virtual Reality Technology for the Rehabilitation of Upper Limbs After Stroke | SpringerLink

, , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: