[Abstract + References] Multi-modal Intent Recognition Method for the Soft Hand Rehabilitation Exoskeleton

Abstract

Stroke has become the second most disabling disease in the world. Due to the intensive demand for physical therapists and the severe dependence on hospitals, the cost for the treatment of stroke patients is huge. As the most flexible limb of the human body, the hand faces more severe challenges, which has a much lower degree of recovery than the upper and lower limbs. In the face of these challenges, a new treatment, exoskeleton-based rehabilitation, has demonstrated new vitality. This paper proposes a novel design of the soft hand exoskeleton based on bionics and anatomy and the exoskeleton could help the users bend and extend their fingers, which would greatly improve the motor ability of stroke patients. Through the control of the six drive motors, the exoskeleton could achieve most of the hand’s freedom of training. At the same time, we propose a multi-modal intent recognition method based on machine vision and machine speech. Under specific rehabilitation training scenarios, both healthy subjects and patients could complete grasping tasks in the wearing of the exoskeleton, overcoming potential security risks caused by misidentification due to using the single-modal intent understanding method.

References

1. M. P. Lindsay, B. Norrving, R. L. Sacco, M. Brainin, W. Hacke, S. Martins, et al., “World stroke organization (wso): Global stroke fact sheet 2019”, 2019.CrossRef  Google Scholar 

2. [online] Available: http://www.sohu.com/a/306292195_243428. Show Context

3. K. B. Lee, S. H. Lim, K. H. Kim, K. J. Kim, Y. R. Kim, W. N. Chang, et al., “Six-month functional recovery of stroke patients: a multi-time-point study”, International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation, vol. 38, no. 2, pp. 173, 2015. Show Context CrossRef  Google Scholar 

4. P. Polygerinos, S. Lyne, Z. Wang, L. F. Nicolini, B. Mosadegh, G. M. Whitesides, et al., “Towards a soft pneumatic glove for hand rehabilitation”, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1512-1517, 2013. Show Context View Article Full Text: PDF (1334KB) Google Scholar 

5. J. Yi, X. Chen and Z. Wang, “A three-dimensional- printed soft robotic glove with enhanced ergonomics and force capability”, IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 242-248, 2017. Show Context View Article Full Text: PDF (676KB) Google Scholar 

6. N. Ho, K. Tong, X. Hu, K. Fung, X. Wei, W. Rong, et al., “An emg-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation”, 2011 IEEE international conference on rehabilitation robotics, pp. 1-5, 2011. Show Context View Article Full Text: PDF (848KB) Google Scholar 

7. S. Park, L. Weber, L. Bishop, J. Stein and M. Ciocarlie, “Design and development of effective transmission mechanisms on a tendon driven hand orthosis for stroke patients”, 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2281-2287, 2018. Show Context View Article Full Text: PDF (2666KB) Google Scholar 

8. L. Gerez and M. Liarokapis, “An underactuated tendon-driven wearable exo-glove with a four-output differential mechanism”, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6224-6228, 2019. Show Context View Article Full Text: PDF (3125KB) Google Scholar 

9. T. Bützer, J. Dittli, J. Lieber, H. J. van Hedel, A. Meyer-Heim, O. Lambercy, et al., “Pexo- a pediatric whole hand exoskeleton for grasping assistance in task-oriented training”, 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pp. 108-114, 2019. Show Context View Article Full Text: PDF (1216KB) Google Scholar 

10. M. Mirakhorlo, N. Van Beek, M. Wesseling, H. Maas, H. Veeger and I. Jonkers, “A musculoskeletal model of the hand and wrist: model definition and evaluation”, Computer methods in biomechanics and biomedical engineering, vol. 21, no. 9, pp. 548-557, 2018. Show Context CrossRef  Google Scholar 

11. M. Suarez-Escobar and E. Rendon-Velez, “An overview of robotic/mechanical devices for post-stroke thumb rehabilitation”, Disability and Rehabilitation: Assistive Technology, vol. 13, no. 7, pp. 683-703, 2018. Show Context CrossRef  Google Scholar 

12. M. Li, Z. Liang, B. He, C.-G. Zhao, W. Yao, G. Xu, et al., “Attention-controlled assistive wrist rehabilitation using a low-cost eeg sensor”, IEEE Sensors Journal, vol. 19, no. 15, pp. 6497-6507, 2019. Show Context View Article Full Text: PDF (4401KB) Google Scholar 

13. D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar and A. I. Rudnicky, “Pocketsphinx: A free real-time continuous speech recognition system for hand-held devices”, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 1, pp. I-I, 2006. Show Context View Article Full Text: PDF (89KB) Google Scholar 

14. J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You only look once: Unified real-time object detection”, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016. Show Context View Article Full Text: PDF (1742KB) Google Scholar 

Source: https://ieeexplore.ieee.org/abstract/document/9189174

, , , , , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: