Archive for category Books

[BOOK] Learning Radiology: Recognizing the Basics – William Herring – Google Books

Front Cover

Elsevier Health SciencesApr 14, 2011 – Medical – 318 pages

Learning Radiology: Recognizing the Basics, 2nd Edition, is an image-filled, practical, and clinical introduction to this integral part of the diagnostic process. William Herring, MD, a skilled radiology teacher, masterfully covers everything you need to know to effectively interpret medical images. Learn the latest on ultrasound, MRI, CT, and more, in a time-friendly format with brief, bulleted text and abundant high-quality images. Then ensure your mastery of the material with additional online content, bonus images, and self-assessment exercises at http://www.studentconsult.com.

Identify a wide range of common and uncommon conditions based upon their imaging findings.Quickly grasp the fundamentals you need to know through easy-access bulleted text and more than 700 images.

Arrive at diagnoses by following a pattern recognition approach, and logically overcome difficult diagnostic challenges with the aid of decision trees.

Learn from the best, as Dr. Herring is both a skilled radiology teacher and the host of his own specialty website, http://www.learningradiology.com.

Easily master the fundamental principles of MRI, ultrasound, and CT with new chapters that cover principles of each modality and the recognition of normal and abnormal findings.

Know the basics and be more confident when interpreting diagnostic imaging studies

via Learning Radiology: Recognizing the Basics – William Herring – Google Books

,

Leave a comment

[BOOK] Enhanced Recovery After Surgery

Introduction

This book is the first comprehensive, authoritative reference that provides a broad and comprehensive overview of Enhanced Recovery After Surgery (ERAS). Written by experts in the field, chapters analyze elements of care that are both generic and specific to various surgeries. It covers the patient journey through such a program, commencing with optimization of the patient’s condition, patient education, and conditioning of their expectations.

Organized into nine parts, this book discusses metabolic responses to surgery, anaesthetic contributions, and optimal fluid management after surgery. Chapters are supplemented with examples of ERAS pathways and practical tips on post-operative pain control, feeding, mobilization, and criteria for discharge.
Enhanced Recovery After Surgery: A Complete Guide to Optimizing Outcomes is an indispensable manual that thoroughly explores common post-operative barriers and challenges.

via Enhanced Recovery After Surgery | SpringerLink

, , , , , ,

Leave a comment

[Book Chapter] A Sensorimotor Rhythm-Based Brain–Computer Interface Controlled Functional Electrical Stimulation for Handgrasp Rehabilitation. (Abstract + References)

Abstract

Each year, 795,000 stroke patients suffer a new or recurrent stroke and 235,000 severe traumatic brain injuries (TBIs) occur in the US. These patients are susceptible to a combination of significant motor, sensory, and cognitive deficits, and it becomes difficult or impossible for them to perform activities of daily living due to residual functional impairments. Recently, sensorimotor rhythm (SMR)-based brain–computer interface (BCI)-controlled functional electrical stimulation (FES) has been studied for restoration and rehabilitation of motor deficits. To provide future neuroergonomists with the limitations of current BCI-controlled FES research, this chapter presents the state-of-the-art SMR-based BCI-controlled FES technologies, such as current motor imagery (MI) training procedures and guidelines, an EEG-channel montage used to decode MI features, and brain features evoked by MI.

References

  1. Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2008). Filter Bank Common Spatial Pattern (FBCSP) in brain-computer interface. In IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2390–2397.Google Scholar
  2. Ang, K. K., Guan, C., Ang, Kai Keng, & Guan, Cuntai. (2015). Brain-computer interface for neurorehabilitation of upper limb after stroke. Proceedings of the IEEE, 103(6), 944–953.CrossRefGoogle Scholar
  3. Bashashati, A., Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering, 4(2), R32–R57.CrossRefGoogle Scholar
  4. Berrar, D., Bradbury, I., & Dubitzky, W. (2006). Avoiding model selection bias in small-sample genomic datasets. Bioinformatics22(10), 1245–1250. Oxford Univ Press.Google Scholar
  5. Blanchard, G., & Blankertz, B. (2004). BCI competition 2003—Data set IIa: Spatial patterns of self-controlled brain rhythm modulations. IEEE Transactions on Biomedical Engineering, 51(6), 1062–1066.CrossRefGoogle Scholar
  6. Choi, I., Bond, K., Krusienski, D., & Nam, C. S. (2015). Comparison of stimulation patterns to elicit steady-state somatosensory evoked potentials (SSSEPs): Implications for hybrid and SSSEP-based BCIs. Systems, Man, and Cybernetics (SMC)2015 IEEE International Conference on (pp. 3122–3127).Google Scholar
  7. Choi, I., Bond, K., & Nam, C. S. (2016). A hybrid BCI-controlled FES system for hand-wrist motor function. IEEE International Conference on Systems, Man, and Cybernetics.Google Scholar
  8. Daly, J. J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., & Dohring, M. (2009). Feasibility of a new application of noninvasive brain computer interface (BCI): A case study of training for recovery of volitional motor control after stroke. Journal of Neurologic Physical Therapy33(4), 203–211.Google Scholar
  9. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefGoogle Scholar
  10. Delorme, A., Makeig, S., & Sejnowski, T. (2001). Automatic artifact rejection for EEG data using high-order statistics and independent component analysis. Proceedings of the third international ICA conference (pp. 9–12).Google Scholar
  11. Doucet, B. M., Lam, A., & Griffin, L. (2012). Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med, 85(2), 201–215.Google Scholar
  12. Elnady, A. M., Zhang, X., Xiao, Z. G., Yong, X., Randhawa, B. K., Boyd, L., & Menon, C. (2015). A single-session preliminary evaluat on of an affordable BCI-controlled arm exoskeleton and motor-proprioception platform. Frontiers in Human Neuroscience9, 168. Switzerland.Google Scholar
  13. Ferree, T. C., Clay, M. T., & Tucker, D. M. (2001). The spatial resolution of scalp EEG. Neurocomputing, 38–40, 1209–1216.CrossRefGoogle Scholar
  14. Forrester, B. J., & Petrofsky, J. S. (2004). Effect of electrode size, shape, and placement during electrical stimulation. Journal of Applied Research, 4(2), 346–354.Google Scholar
  15. Gordon, C. C., Churchill, T., Clauser, C. E., Bradtmiller, B., & McConville, J. T. (1989). Anthropometric survey of US army personnel: methods and summary statistics 1988.Google Scholar
  16. Gu, Y., Dremstrup, K., & Farina, D. (2009). Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clinical Neurophysiology120(8), 1596–1600. International Federation of Clinical Neurophysiology.Google Scholar
  17. Hamedi, M., Salleh, S.-H., & Noor, A. M. (2016). Electroencephalographic motor imagery brain connectivity analysis for BCI: A review. Neural Computation, 28(6), 999–1041.MathSciNetCrossRefGoogle Scholar
  18. Hyvärinen, a, & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks : the official journal of the International Neural Network Society13(4–5), 411–430.Google Scholar
  19. Kayser, J., & Tenke, C. E. (2003). Optimizing PCA methodology for ERP component identification and measurement: Theoretical rationale and empirical evaluation. Clinical Neurophysiology, 114(12), 2307–2325.CrossRefGoogle Scholar
  20. Kim, T., Kim, S., & Lee, B. (2016). Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: A randomized controlled trial. Occupational therapy international23(1), 39–47. England.Google Scholar
  21. Lawrence, M. (2009). Transcutaneous electrode technology for neuroprostheses, (18213).Google Scholar
  22. Lee, H., & Choi, S. (2003). PCA + HMM + SVM for EEG pattern classification. Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.1(2), 1–4.Google Scholar
  23. Liu, Y., Li, M., Zhang, H., Wang, H., Li, J., Jia, J., Wu, Y., et al. (2014). A tensor-based scheme for stroke patients’ motor imagery EEG analysis in BCI-FES rehabilitation training. Journal of neuroscience methods222, 238–249. Elsevier.Google Scholar
  24. Looned, R., Webb, J., Xiao, Z. G., & Menon, C. (2014). Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. Journal of neuroengineering and rehabilitation11, 51. England.Google Scholar
  25. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4(2), R1–R13.CrossRefGoogle Scholar
  26. Lyons, G. M., Leane, G. E., Clarke-Moloney, M., O’Brien, J. V., & Grace, P. A. (2004). An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle. Medical Engineering & Physics, 26(10), 873–878.CrossRefGoogle Scholar
  27. McGie, S. C., Zariffa, J. J., Popovic, M. R., & Nagai, M. K. (2015). Short-term neuroplastic effects of brain-controlled and muscle-controlled electrical stimulation. Neuromodulation18(3), 233–240. United States.Google Scholar
  28. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1.CrossRefGoogle Scholar
  29. Mukaino, M., Ono, T., Shindo, K., Fujiwara, T., Ota, T., Kimura, A., Liu, M., et al. (2014). Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke. Journal of rehabilitation medicine46(4), 378–382. Sweden: Medical Journals Limited.Google Scholar
  30. Müller, G. R. R., Neuper, C., Rupp, R., Keinrath, C., Gerner, H. J. J., & Pfurtscheller, G. (2003). Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neuroscience Letters, 340(2), 143–147.CrossRefGoogle Scholar
  31. Nam, C. S., Lee, J., Bahn, S., Li, Y., & Choi, I. (2014). Brain-computer interface supported collaborative work. Proceedings of 5th International Brain-Computer Interface Meeting.Google Scholar
  32. Nam, C. S., Moore, M., Choi, I., & Li, Y. (2015). Designing better, cost-effective brain-computer interfaces. Ergonomics in Design: The Quarterly of Human Factors Applications, 23(4), 13–19. SAGE.Google Scholar
  33. Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors.Google Scholar
  34. Noirhomme, Q., Lesenfants, D., Gomez, F., Soddu, A., Schrouff, J., Garraux, G., Luxen, A., et al. (2014). Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. NeuroImage: Clinical4, 687–694.CrossRefGoogle Scholar
  35. Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: fully automated statistical thresholding for EEG artifact rejection. Journal of neuroscience methods192(1), 152–162. Elsevier.Google Scholar
  36. Novi, Q., Guan, C., Dat, T. H., & Xue, P. (2007). Sub-band common spatial pattern (SBCSP) for brain-computer interface. Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, 204–207.Google Scholar
  37. Pfurtscheller, G., & Lopes, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842–1857.CrossRefGoogle Scholar
  38. Pfurtscheller, G., Müller-Putz, G. R., Pfurtscheller, J. J., Rupp, R. R., Muller-Putz, G. R., Pfurtscheller, J. J., Rupp, R. R., et al. (2005). EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP Journal on Applied Signal Processing2005(19), 3152–3155. Hindawi, USA.Google Scholar
  39. Pfurtscheller, G., Müller, G. R., Pfurtscheller, J. J., Gerner, H. J. J., Rupp, R. R., Muller, G. R., Pfurtscheller, J. J., et al. (2003). “Thought”—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience letters351(1), 33–36. Ireland.CrossRefGoogle Scholar
  40. Pfurtscheller, G., & Neuper, C. (2006). Future prospects of ERD/ERS in the context of brain—computer interface (BCI) developments. Progress in Brain Research, 159, 433–437.CrossRefGoogle Scholar
  41. Pfurtscheller, G., Solis-Escalante, T., Ortner, R., Linortner, P., & Muller-Putz, G. R. (2010). Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch”: A feasibility study towards a hybrid BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(4), 409–414.CrossRefGoogle Scholar
  42. Polikar, R. (2006). Ensemble based systems in decision making. Circuits and Systems Magazine, IEEE, 6(3), 21–45.CrossRefGoogle Scholar
  43. Powers, J. C., Bieliaieva, K., Wu, S., & Nam, C. S. (2015). The human factors and ergonomics of P300-based brain-computer interfaces. Brain sciences5(3), 318–56. Switzerland.Google Scholar
  44. Reynolds, C., Osuagwu, B. A., & Vuckovic, A. (2015). Influence of motor imagination on cortical activation during functional electrical stimulation. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology126(7), 1360–1369. Netherlands.Google Scholar
  45. Rohm, M., Muller-Putz, G. R., Kreilinger, A., von Ascheberg, A., & Rupp, R. (2010). A hybrid-Brain Computer Interface for control of a reaching and grasping neuroprosthesis. Biomedizinische Technik55(suppl. 1). Fachverlag Schiele & Schon GmbH, Germany.Google Scholar
  46. Rohm, M., Schneiders, M., Müller, C., Kreilinger, A., Kaiser, V., Müller-Putz, G. R., Rupp, R. R. R., et al. (2013). Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artificial Intelligence in Medicine59(2), 133–142. Netherlands: Elsevier Science B.V., Netherlands.Google Scholar
  47. Roset, S. A., Gant, K., Prasad, A., & Sanchez, J. C. (2014). An adaptive brain actuated system for augmenting rehabilitation. Frontiers in neuroscience8, 415. Switzerland.Google Scholar
  48. Rosner, B. (2015). Fundamentals of biostatistics. Nelson Education.Google Scholar
  49. Schalk, G., & Mellinger, J. (2010). A practical guide to brain–computer interfacing with BCI2000: General-purpose software for brain-computer interface research, data acquisition, stimulus presentation, and brain monitoring. Springer Science & Business Media.Google Scholar
  50. Sun, S., Zhang, C., & Zhang, D. (2007). An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognition Letters, 28(15), 2157–2163.CrossRefGoogle Scholar
  51. Tan, H. G., Shee, C. Y., Kong, K. H., Guan, C., Ang, W. T., et al. (2011). EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients. Frontiers of Mechanical Engineering6(1), 71–81. SP Higher Education Press, Germany.Google Scholar
  52. Vuckovic, A., Wallace, L., & Allan, D. B. (2015). Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. Journal of neurologic physical therapy : JNPT39(1), 3–14. United States.Google Scholar
  53. Wang, D., Miao, D., & Blohm, G. (2012). Multi-class motor imagery EEG decoding for brain-computer interfaces. Frontiers in Neuroscience6(OCT), 1–13.Google Scholar
  54. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.CrossRefGoogle Scholar
  55. Young, B. M., Nigogosyan, Z., Walton, L. M., Remsik, A., Song, J., Nair, V. A., Tyler, M. E., et al. (2015). Dose-response relationships using brain-computer interface technology impact stroke rehabilitation. Frontiers in human neuroscience9, 361. Switzerland.Google Scholar
  56. Young, B. M., Nigogosyan, Z., Nair, V. A., Walton, L. M., Song, J., Tyler, M. E., Edwards, D. F., et al. (2014). Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability. Frontiers in neuroengineering7, 18. Switzerland.Google Scholar
  57. Zickler, C., Riccio, A., Leotta, F., Hillian-Tress, S., Halder, S., Holz, E., Staiger-Salzer, P., et al. (2011). A brain-computer interface as input channel for a standard assistive technology software. Clinical EEG and neuroscience42(4), 236–244.CrossRefGoogle Scholar

via A Sensorimotor Rhythm-Based Brain–Computer Interface Controlled Functional Electrical Stimulation for Handgrasp Rehabilitation | SpringerLink

, , , , ,

Leave a comment

[Abstract] Wrist flexion rehabilitation device using arm mbed microcontroller for post-stroke patient – Full Text PDF

Abstract

Rehabilitation is a process of recovery of an individual from disabling or functionally limiting condition, whether temporary or irreversible, participates to regain maximal function, independence, and restoration [1]. The purpose of rehabilitation is to prevent and slow down the loss of function of the body, improve and restore the function, compensation for the lost function, and maintenance of the current function.

Full Text PDF

via Wrist flexion rehabilitation device using arm mbed microcontroller for post-stroke patient – UTHM Institutional Repository

, , ,

Leave a comment

[Abstract] A game changer: the use of digital technologies in the management of upper limb rehabilitation – BOOK

Abstract

Hemiparesis is a symptom of residual weakness in half of the body, including the upper extremity, which affects the majority of post stroke survivors. Upper limb function is essential for daily life and reduction in movements can lead to tremendous decline in quality of life and independence. Current treatments, such as physiotherapy, aim to improve motor functions, however due to increasing NHS pressure, growing recognition on mental health, and close scrutiny on disease spending there is an urgent need for new approaches to be developed rapidly and sufficient resources devoted to stroke disease. Fortunately, a range of digital technologies has led to revived rehabilitation techniques in captivating and stimulating environments. To gain further insight, a meta-analysis literature search was carried out using the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) method. Articles were categorized and pooled into the following groups; pro/anti/neutral for the use of digital technology. Additionally, most literature is rationalised by quantitative and qualitative findings. Findings displayed, the majority of the inclusive literature is supportive of the use of digital technologies in the rehabilitation of upper extremity following stroke. Overall, the review highlights a wide understanding and promise directed into introducing devices into a clinical setting. Analysis of all four categories; (1) Digital Technology, (2) Virtual Reality, (3) Robotics and (4) Leap Motion displayed varying qualities both—pro and negative across each device. Prevailing developments on use of these technologies highlights an evolutionary and revolutionary step into utilizing digital technologies for rehabilitation purposes due to the vast functional gains and engagement levels experienced by patients. The influx of more commercialised and accessible devices could alter stroke recovery further with initial recommendations for combination therapy utilizing conventional and digital resources.

via A game changer: the use of digital technologies in the management of upper limb rehabilitation – Enlighten: Publications

, , , , , , , , , ,

Leave a comment

[BOOK] Intelligent Biomechatronics in Neurorehabilitation – Xiaoling Hu – Google Books

Front Cover
Academic PressOct 19, 2019 – Science – 286 pages

Intelligent Biomechatronics in Neurorehabilitation presents global research and advancements in intelligent biomechatronics and its applications in neurorehabilitation. The book covers our current understanding of coding mechanisms in the nervous system, from the cellular level, to the system level in the design of biological and robotic interfaces. Developed biomechatronic systems are introduced as successful examples to illustrate the fundamental engineering principles in the design. The third part of the book covers the clinical performance of biomechatronic systems in trial studies. Finally, the book introduces achievements in the field and discusses commercialization and clinical challenges.

As the aging population continues to grow, healthcare providers are faced with the challenge of developing long-term rehabilitation for neurological disorders, such as stroke, Alzheimer’s and Parkinson’s diseases. Intelligent biomechatronics provide a seamless interface and real-time interactions with a biological system and the external environment, making them key to automation services.

  • Written by international experts in the rehabilitation and bioinstrumentation industries
  • Covers the current understanding of nervous system coding mechanisms, which are the basis for biological and robotic interfaces
  • Demonstrates and discusses robotic rehabilitation effectiveness and automatic evaluation

via Intelligent Biomechatronics in Neurorehabilitation – Xiaoling Hu – Google Books

, , , , ,

Leave a comment

[BOOK] Virtual Reality for Psychological and Neurocognitive Interventions

Virtual Reality for Psychological and Neurocognitive Interventions

  • Albert “Skip” Rizzo
  • Stéphane Bouchard

Part of the Virtual Reality Technologies for Health and Clinical Applications book series (VRTHCA)

Table of contents

Search within book

  1. Front Matter

    Pages i-xii

  1. William S. Ryan, Jessica Cornick, Jim Blascovich, Jeremy N. Bailenson
    Pages 15-46
  2. Berenice Serrano, Cristina Botella, Brenda K. Wiederhold, Rosa M. Baños
    Pages 47-84
  3. Melissa Peskin, Brittany Mello, Judith Cukor, Megan Olden, JoAnn Difede
    Pages 85-102
  4. Stéphane Bouchard, Mylène Laforest, Pedro Gamito, Georgina Cardenas-Lopez
    Pages 103-130
  5. Patrick S. Bordnick, Micki Washburn
    Pages 131-161
  6. Giuseppe Riva, José Gutiérrez-Maldonado, Antonios Dakanalis, Marta Ferrer-García
    Pages 163-193
  7. Hunter G. Hoffman, Walter J. Meyer III, Sydney A. Drever, Maryam Soltani, Barbara Atzori, Rocio Herrero et al.
    Pages 195-208
  8. Dominique Trottier, Mathieu Goyette, Massil Benbouriche, Patrice Renaud, Joanne-Lucine Rouleau, Stéphane Bouchard
    Pages 209-225
  9. Thomas D. Parsons, Albert “Skip” Rizzo
    Pages 247-265
  10. P. J. Standen, David J. Brown
    Pages 267-287
  11. Roos Pot-Kolder, Wim Veling, Willem-Paul Brinkman, Mark van der Gaag
    Pages 289-305
  12. Pierre Nolin, Jérémy Besnard, Philippe Allain, Frédéric Banville
    Pages 307-326
  13. Lindsay A. Yazzolino, Erin C. Connors, Gabriella V. Hirsch, Jaime Sánchez, Lotfi B. Merabet
    Pages 361-385
  14. Thomas Talbot, Albert “Skip” Rizzo
    Pages 387-405
  15. Back Matter

    Pages 407-415

About this book

Introduction

This exciting collection tours virtual reality in both its current therapeutic forms and its potential to transform a wide range of medical and mental health-related fields. Extensive findings track the contributions of VR devices, systems, and methods to accurate assessment, evidence-based and client-centered treatment methods, and—as described in a stimulating discussion of virtual patient technologies—innovative clinical training. Immersive digital technologies are shown enhancing opportunities for patients to react to situations, therapists to process patients’ physiological responses, and scientists to have greater control over test conditions and access to results. Expert coverage details leading-edge applications of VR across a broad spectrum of psychological and neurocognitive conditions, including:

  • Treating anxiety disorders and PTSD.
  • Treating developmental and learning disorders, including Autism Spectrum Disorder,
  • Assessment of and rehabilitation from stroke and traumatic brain injuries.
  • Assessment and treatment of substance abuse.
  • Assessment of deviant sexual interests.
  • Treating obsessive-compulsive and related disorders.
  • Augmenting learning skills for blind persons.

Readable and relevant, Virtual Reality for Psychological and Neurocognitive Interventions is an essential idea book for neuropsychologists, rehabilitation specialists (including physical, speech, vocational, and occupational therapists), and neurologists. Researchers across the behavioral and social sciences will find it a roadmap toward new and emerging areas of study.

via Virtual Reality for Psychological and Neurocognitive Interventions | SpringerLink

, , , , ,

Leave a comment

[BOOK Chapter] Assessment and Rehabilitation Using Virtual Reality after Stroke: A Literature Review – Abstract + References

Abstract

This chapter presents the studies that have used virtual reality as an assessment or rehabilitation tool of cognitive functions following a stroke. To be part of this review, publications must have made a collection of data from individuals who have suffered a stroke and must have been published between 1980 and 2017. A total of 50 publications were selected out of a possible 143 that were identified in the following databases: Academic Search Complete, CINAHL, MEDLINE, PsychINFO, Psychological and Behavioural Sciences Collection. Overall, we find that most of the studies that have used virtual reality with stroke patients focused on attention, spatial neglect, and executive functions/multitasking. Some studies have focused on route representation, episodic memory, and prospective memory. Virtual reality has been used for training of cognitive functions with stroke patients, but also for their assessment. Overall, the studies support the value and relevance of virtual reality as an assessment and rehabilitation tool with people who have suffered a stroke. Virtual reality seems indeed an interesting way to better describe the functioning of the person in everyday life. Virtual reality also sometimes seems to be more sensitive than traditional approaches for detecting deficits in stroke people. However, it is important to pursue work in this emergent field in clinical neuropsychology.

References

  1. Ansuini, C., Pierno, A. C., Lusher, D., & Castiello, U. (2006). Virtual reality applications for the remapping of space in neglect patients. Restorative Neurology and Neuroscience, 24(4–6), 431–441.PubMedGoogle Scholar
  2. Baheux, K., Yoshikawa, M., Tanaka, A., Seki, K., & Handa, Y. (2004). Diagnosis and rehabilitation of patients with hemispatial neglect using virtual reality technology. Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society, 7, 4908–4911.Google Scholar
  3. Baheux, K., Yoshizawa, M., Tanaka, A., Seki, K., & Handa, Y. (2005). Diagnosis and rehabilitation of hemispatial neglect patients with virtual reality technology. Technology and health careOfficial Journal of the European Society for Engineering and Medicine, 13(4), 245–260.Google Scholar
  4. Baheux, K., Yoshizawa, M., Seki, K., & Handa, Y. (2006). Virtual reality pencil and paper test for neglect: A protocol. CyberPsychology & Behaviour, 9(2), 192–195.CrossRefGoogle Scholar
  5. Broeren, J., Samuelsson, H., Stibrant-Sunnerhagen, K., Blomstrand, C., & Rydmark, M. (2007). Neglect assessment as an application of virtual reality. Acta Neurlogica Scandinavica, 116, 157–163.CrossRefGoogle Scholar
  6. Brooks, B. M., Rose, F. D., Potter, J., Jayawardena, S., & Morling, A. (2004). Assessing stroke patients’ prospective memory using virtual reality. Brain Injury, 18(4), 391–401.CrossRefGoogle Scholar
  7. Buxbaum, L. J., Palermo, M., Mastrogiovanni, D., Read, M., Rosenberg-Pitonyak, E., Rizzo, A. A., & Coslett, H. (2008). Assessment of spatial attention and neglect with a virtual wheelchair navigation task. Journal of Clinical & Experimental Neuropsychology, 30(6), 650–660.CrossRefGoogle Scholar
  8. Buxbaum, L. J., Dawson, A. M., & Linsley, D. (2012). Reliability and validity of the virtual reality lateralized attention test in assessing hemispatial neglect in right-hemisphere stroke. Neuropsychology, 26(4), 430–441.CrossRefGoogle Scholar
  9. Cameirão, M. S., Faria, A. L., Paulino, T., Alves, J., & i Badia, S. B. (2016). The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients. Journal of Neuroengineering and Rehabilitation, 13(1), 70.Google Scholar
  10. Carelli, L., Rusconi, M. L., Mattioli, F., Stampatori, C., Morganti, F., & Riva, G. (2009). Neuropsychological and virtual reality assessment in topographical disorientation. Annual Review of Cybertherapy and Telemedicine, 7, 230–233.Google Scholar
  11. Carelli, L., Rusconi, M. L., Scarabelli, C., Stampatori, C., Mattioli, F., & Riva, G. (2011). The transfer from survey (map-like) to route representations into virtual reality Mazes: effect of age and cerebral lesion. Journal Of Neuroengineering And Rehabilitation, 2011 Jan 31; Vol 8, pp 6 Electronic Publication.Google Scholar
  12. Castiello, U., Lusher, D., Burton, C., Glover, S., & Disler, P. (2004). Improving left hemispatial neglect using virtual reality. Neurology, 62, 1958–1962.CrossRefGoogle Scholar
  13. Cherniack, E. P. (2011). Not just fun and games: Applications of virtual reality in the identification and rehabilitation of cognitive disorders of the elderly. Disability and Rehabilitation: Assistive Technology, 6(4), 283–289.  https://doi.org/10.3109/17483107.2010.542570.CrossRefPubMedGoogle Scholar
  14. Crosbie, J. H., Lennon, S., Basford, J. R., & McDonough, S. M. (2007). Virtual reality in stroke rehabilitation: Still more virtual than real. Disability and Rehabilitation, 29(14), 1139–1146.CrossRefGoogle Scholar
  15. Dawson, A. M., Buxbaum, L. J., & Rizzo, A. A. (2008). The virtual reality lateralized attention test: Sensitivity and validity of a new clinical tool for assessing hemispatial neglect. Virtual Rehabilitation, 77–82.  https://doi.org/10.1109/ICVR.2008.4625140.
  16. Dvorkin, A. Y., Rymer, W. Z., Harvey, R. L., Bogey, R. A., & Patton, J. L. (2008). Assessment and monitoring of recovery of spatial neglect within a virtual environment. Proceedings of the IEEE Virtual Rehabilitation, 88–92.Google Scholar
  17. Dvorkin, A. Y., Bogey, R. A., Harvey, R. L., & Patton, J. L. (2012). Mapping the neglected space: Gradients of detection revealed by virtual reality. Neurorehabilitation and Neural Repair, 26(2), 120–131.  https://doi.org/10.1177/1545968311410068.CrossRefPubMedGoogle Scholar
  18. Edmans, J., Gladman, J., Walker, M., Sunderland, A., Porter, A., & Fraser, D. S. (2004). Mixed reality environments in stroke rehabilitation: Development as rehabilitation tools. International Journal on Disability and Human Development, 6(1), 39–45.Google Scholar
  19. Faria, A. L., Andrade, A., Soares, L., & i Badia, S. B. (2016). Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients. Journal of Neuroengineering and Rehabilitation, 13(1), 96.CrossRefGoogle Scholar
  20. Fordell, H., Bodin, K., Bucht, G., & Malm, J. (2011). A virtual reality test battery for assessment and screening of spatial neglect. Acta Neurologica Scandinavica, 123, 167–174.  https://doi.org/10.1111/j.1600-0404.2010.01390.x.CrossRefPubMedGoogle Scholar
  21. Gamito, P., Oliveira, J., Coelho, C., Morais, D., Lopes, P., Pacheco, J., & Barata, A. F. (2017). Cognitive training on stroke patients via virtual reality-based serious games. Disability and Rehabilitation, 39(4), 385–388.CrossRefGoogle Scholar
  22. Glover, S., & Castiello, U. (2006). Recovering space in unilateral neglect: A neurological dissociation revealed by virtual reality. Journal of Cognitive Neuroscience, 18(5), 833–843.CrossRefGoogle Scholar
  23. Guilbert, A., Clément, S., Martin, Y., Feuillet, A., & Moroni, C. (2016). Exogenous orienting of attention in hearing: A virtual reality paradigm to assess auditory attention in neglect patients. Experimental Brain Research, 234(10), 2893–2903.CrossRefGoogle Scholar
  24. Gupta, V., Knott, B. A., Kodgi, S., & Lathan, C. E. (2000). Using the “vreye” system for the assessment of unilateral visual neglect: Two case reports. Presence: Teleoperators & Virtual Environments, 9(3), 268–286.CrossRefGoogle Scholar
  25. Jannink, M. J. A., Aznar, M., de Kort, A. C., van de Vis, W., Veltink, P., & van der Kooij, H. (2009). Assessment of visuospatial neglect in stroke patients using virtual reality: A pilot study. International Journal of Rehabilitation Research, 32(4), 280–286.CrossRefGoogle Scholar
  26. Jovanovski, D., Zakzanis, K., Ruttan, L., Campbell, Z., Erb, S., & Nussbaum, D. (2012). Ecologically valid assessment of executive dysfunction using a novel virtual reality task in patients with acquired brain injury. Applied Neuropsychology, 19, 207–220.  https://doi.org/10.1080/09084282.2011.643956.CrossRefPubMedGoogle Scholar
  27. Kang, Y. J., Ku, J., Han, K., Kim, S. I., Yu, T. W., Lee, J. H., & Park, C. I. (2008). Development and clinical trial of virtual reality-based cognitive assessment in people with stroke: Preleminary study. CyberPsychology & Behaviour, 11(3), 329–339.CrossRefGoogle Scholar
  28. Katz, N., Ring, H., Naveh, Y., Kizony, R., Feintuch, U., & Weiss, P. L. (2005). Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with unilateral spatial neglect. Disability and Rehabilitation, 27(20), 1235–1243.CrossRefGoogle Scholar
  29. Kim, K., Kim, J., Ku, J., Kim, D. Y., Chang, W. H., Shin, D. I., Lee, J. H., Kim, I. Y., & Kim, S. I. (2004). A virtual reality assessment and training system for unilateral neglect. CyberPsychology & Behaviour, 7, 742–749.CrossRefGoogle Scholar
  30. Kim, J., Kim, K., Kim, D. Y., Chang, W. H., Park, C.-I., Ohn, S. H., Han, K., Ku, J., Nam, S. W., Kim, I. Y., & Kim, S. I. (2007). Virtual environment training system for rehabilitation of stroke patients with unilateral neglect: Crossing the virtual street. CyberPsychology & Behaviour, 10(1), 7–15.CrossRefGoogle Scholar
  31. Kim, D. Y., Ku, J., Chang, W. H., Park, T. H., Lim, J. Y., Han, K., Kim, I. Y., & Kim, S. I. (2010). Assessment of post-stroke extrapersonal neglect using a three-dimensional immersive virtual street crossing program. Acta Neurologica Scandinavica, 121, 171–177.  https://doi.org/10.1111/j.1600-0404.2009.01194.x.CrossRefPubMedGoogle Scholar
  32. Kim, B. R., Chun, M. H., Kim, L. S., & Park, J. Y. (2011b). Effect of virtual reality on cognition in stroke patients. Annals of Rehabilitation Medicine, 35(3), 450–459.CrossRefGoogle Scholar
  33. Kim, Y. M., Chun, M. H., Yun, G. J., Song, Y. J., & Young, H. E. (2011a). The effect of virtual reality training on unilateral spatial neglect in stroke patients. Annals of Rehabilitation Medicine, 35(3), 309–315.CrossRefGoogle Scholar
  34. Knight, C., Alderman, N., & Burgess, P. W. (2002). Development of a simplified version of the multiple errands test for use in hospital settings. Neuropsychological Rehabilitation, 12(3), 231–255.CrossRefGoogle Scholar
  35. Lee, J. H., Ku, J., Cho, W., Hahn, W. Y., Kim, I. Y., Lee, S.-M., Kang, Y., Kim, D. Y., Yu, T., Wiederhold, B. K., Wiederhold, M., & Kim, S. I. (2003). A virtual reality system for the assessment and rehabilitation of the activities of daily living. CyberPsychology & Behaviour, 6(4), 383–388.CrossRefGoogle Scholar
  36. Lisa, L. P., Jughters, A., & Kerckhofs, E. (2013). The effectiveness of different treatment modalities for the rehabilitation of unilateral neglect in stroke patients: A systematic review. NeuroRehabilitation, 33, 611–620.  https://doi.org/10.3233/NRE-130986.CrossRefPubMedGoogle Scholar
  37. Maier, M., Bañuelos, N. L., Ballester, B. R., Duarte, E., & Verschure, P. F. (2017, July). Conjunctive rehabilitation of multiple cognitive domains for chronic stroke patients in virtual reality. In Rehabilitation Robotics (ICORR), 2017 international conference on (pp. 947–952). IEEE.Google Scholar
  38. Morganti, F. (2004). Virtual interaction in cognitive neuropsychology. Studies in Health, Technologies and Informatics, 99, 55–70.Google Scholar
  39. Myers, R. L., & Bierig, T. (2003). Virtual reality and left hemineglect: A technology for assessment and therapy. CyberPsychology & Behaviour, 3, 465–468.CrossRefGoogle Scholar
  40. Navarro, M_. D., Llorens, R., Noé, E., Ferri, J., & Alcaniz, M. (2013). Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals. Neuropsychological Rehabilitation, 23(4), 597–618.  https://doi.org/10.1080/09602011.2013.806269.CrossRefPubMedGoogle Scholar
  41. Nir-Hadad, S. Y., Weiss, P. L., Waizman, A., Schwartz, N., & Kizony, R. (2017). A virtual shopping task for the assessment of executive functions: Validity for people with stroke. Neuropsychological Rehabilitation, 27(5), 808–833.CrossRefGoogle Scholar
  42. Pridmore, T., Cobb, S., Hilton, D., Green, J., & Eastgate, R. (2007). Mixed reality environments in stroke rehabilitation: Interfaces across the real-virtual divide. International Journal of Disability and Human Development, 6(1), 87–95.CrossRefGoogle Scholar
  43. Rand, D., Katz, N., Kizony, R., & Weiss, P. L. (2005). The virtual mall: a functional virtual environment for stroke rehabilitation. Annual Review of CyberTherapy and Telemedicine, 3, 193–198.Google Scholar
  44. Rand, D., Katz, N., & Weiss, P. L. (2007). Evaluation of virtual shopping in the VMall: Comparison of post-stroke participants to healthy control groups. Disability and Rehabilitation, 29, 1710–1719.CrossRefGoogle Scholar
  45. Rand, D., Basha-Abu Rukan, S., Weiss, P. L., & Katz, N. (2009a). Validation of the virtual MET as an assessment tool for executive functions. Neuropsychological Rehabilitation, 19, 583–602.CrossRefGoogle Scholar
  46. Rand, D., Weiss, P. L., & Katz, N. (2009b). Training multitasking in virtual supermarket: A novel intervention after stroke. The American Journal of Occupational Therapy, 63(5), 535–542.CrossRefGoogle Scholar
  47. Raspelli, S., Carelli, L., Morganti, F., Poletti, B., Corra, B., Silani, V., & Riva, G. (2010). Implementation of the multiple errands test in NeuroVR supermarket: A possible approach. Studies in Health Technology and Informatics, 154, 115–119.PubMedGoogle Scholar
  48. Raspelli, S., Pallavicini, F., Carelli, L., Morganti, F., Poletti, B., Corra, B., Silani, V., & Riva, G. (2011). Validation of a neuro virtual reality-based version of the multiple errands test for the assessment of executive functions. Annual Review of CyberTheraphy and Telemedicine, 9, 72–80.Google Scholar
  49. Riva, G., Carelli, L., Gaggioli, A., Gorini, A., Vigna, C., Corsi, R., Faletti, G., & Vezzadini, L. (2009). NeuroVR 1.5 – a free virtual reality platform for the assessment and treatment in clinical psychology and neuroscience. Milan: Applied Technology for Neuro-Psychology Laboratory, Instituto Auxologico Italiano.Google Scholar
  50. Rose, F. D., Brooks, B. M., Attree, E. A., Parslow, D. M., Leadbetter, A. G., McNeil, J. E., Jayawardenas, S., Greenwood, R., & Potter, J. (1999). A preliminary investigation into the use of virtual environments in memory retraining after vascular brain injury: Indications for future strategy? Disability and Rehabilitation, 21(12), 548–554.CrossRefGoogle Scholar
  51. Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation: Review. CyberPsychology & Behaviour, 8(3), 241–262.CrossRefGoogle Scholar
  52. Rushton, S. K., Coles, K. L., & Wann, J. P. (1996). Virtual reality technology in the assessment and rehabilitation of unilateral visual neglect. 1st European Conference on Disability, Virtual Reality, and Associated Technologies. Maidenhead.Google Scholar
  53. Salva, A. M., Wiederhold, B. K., Alban, A. J., Hughes, C., Smith, E., Fidopiastis, C., & Wiederhold, M. D. (2009). Cognitive therapy using mixed reality for those impaired by cerebrovascular accident (CVA). Annual Review of Cybertherapy and Telemedicine, 7, 253–256.Google Scholar
  54. Shallice, T., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741.CrossRefGoogle Scholar
  55. Smith, J., Hebert, D., & Reid, D. (2007). Exploring the effects of virtual reality on unilateral neglect caused by stroke: Four case studies. Technology & Disability, 19, 29–40.CrossRefGoogle Scholar
  56. Tanaka, T., Sugihara, S., Nara, H., Ino, S., & Ifukube, T. (2005). A preliminary study of clinical assessment of the left unilateral spatial neglect using a head-mounted display system (HMD) in rehabilitation engineering technology. Journal of Neuroengineering & Rehabilitation, 2, 31–40.CrossRefGoogle Scholar
  57. Tanaka, T., Ifukube, T., Sugihara, S., & Izumi, T. (2010). A case study of new assessment and training of unilateral spatial neglect in stroke patients: Effect of visual image transformation and visual stimulation by using a head-mounted display system (HMD). Journal of Neuroengineering and Rehabilitation, 7(20), 1–8.Google Scholar
  58. Tsirlin, I., Dupierrix, E., Chokron, S., Coquillart, S., & Ohlmann, T. (2009). Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: Review and analysis. CyberPsychology & Behaviour, 12(2), 175–181.CrossRefGoogle Scholar
  59. Weiss, P. L., Naveh, Y., & Katz, N. (2003). Design and testing of virtual environment to train stroke patients with unilateral spatial neglect to cross a street safely. Occupational Therapy International, 10(1), 39–55.CrossRefGoogle Scholar
  60. Williams, G. R., Jiang, J. G., Matchar, D. B., & Samsa, G. O. (1999). Incidence and occurrence of total (first-ever and recurrent) stroke. Stroke, 30, 2523–2528.CrossRefGoogle Scholar
  61. Yasuda, K., Muroi, D., Ohira, M., & Iwata, H. (2017). Validation of an immersive virtual reality system for training near and far space neglect in individuals with stroke: A pilot study. Topics in Stroke Rehabilitation, 24(7), 533–538.CrossRefGoogle Scholar

via Assessment and Rehabilitation Using Virtual Reality after Stroke: A Literature Review | SpringerLink

, , , , , , , ,

Leave a comment

[Booklet] Parenting after brain injury – PDF

by Dr Alex Goody

Image result for Parenting after brain injury

This booklet has been written to help those parents
who have had a brain injury understand how their injury
has affected them in their role as a parent.

 

, ,

Leave a comment

[Abstract + References] Epilepsy and Anticonvulsant Therapy in Brain Tumor Patients – Book Chapter

Book Chapter

Authors: Sylvia C. Kurz, David Schiff, Patrick Y. Wen

Abstract

Seizures are common in patients with brain tumors and may have a significant impact on quality of life. The actual seizure risk varies based on tumor histology and tumor location. Seizures are most common in patients with glioneuronal tumors and temporal, insular, or frontal lobe tumor location. Antiepileptic drug therapy is indicated in patients with a history of seizure, and the choice of symptomatic treatment should follow the principles of treatment for focal symptomatic epilepsy. In general, antiepileptic drugs that interact with the hepatic CYP450 co-enzymes should be avoided in brain tumor patients if possible due to potential drug-chemotherapy interactions. Levetiracetam represents the antiepileptic drug of choice in patients with brain tumors and has been demonstrated to be efficacious and is well tolerated in brain tumor patients. Lacosamide is an alternative anticonvulsant agent with increasing experience supporting its efficacy and favorable side effect profile.

References

  1. 1.
    Lote K, Stenwig AE, Skullerud K, Hirschberg H (1998) Prevalence and prognostic significance of epilepsy in patients with gliomas. Eur J Cancer 34:98–102PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Herman ST (2002) Epilepsy after brain insult: targeting epileptogenesis. Neurology 59:S21–S26PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    De Santis A, Villani R, Sinisi M, Stocchetti N, Perucca E (2002) Add-on phenytoin fails to prevent early seizures after surgery for supratentorial brain tumors: a randomized controlled study. Epilepsia 43:175–182PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Southwell DG, Garcia PA, Berger MS, Barbaro NM, Chang EF (2012) Long-term seizure control outcomes after resection of gangliogliomas. Neurosurgery 70:1406–1413; discussion 1413–1404PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chang EF, Christie C, Sullivan JE et al (2010) Seizure control outcomes after resection of dysembryoplastic neuroepithelial tumor in 50 patients. J Neurosurg Pediatr 5:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tomita T, Volk JM, Shen W, Pundy T (2016) Glioneuronal tumors of cerebral hemisphere in children: correlation of surgical resection with seizure outcomes and tumor recurrences. Childs Nerv Syst 32:1839–1848PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pallud J, Audureau E, Blonski M et al (2014) Epileptic seizures in diffuse low-grade gliomas in adults. Brain 137:449–462PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Chang EF, Potts MB, Keles GE et al (2008) Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 108:227–235PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Moots PL, Maciunas RJ, Eisert DR, Parker RA, Laporte K, Abou-Khalil B (1995) The course of seizure disorders in patients with malignant gliomas. Arch Neurol 52:717–724PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Flanigan PM, Jahangiri A, Kuang R et al (2017) Improved survival with decreased wait time to surgery in glioblastoma patients presenting with seizure. Neurosurgery 81(5):824–833PubMedPubMedCentralGoogle Scholar
  11. 11.
    Toledo M, Sarria-Estrada S, Quintana M et al (2017) Epileptic features and survival in glioblastomas presenting with seizures. Epilepsy Res 130:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Englot DJ, Magill ST, Han SJ, Chang EF, Berger MS, McDermott MW (2016) Seizures in supratentorial meningioma: a systematic review and meta-analysis. J Neurosurg 124:1552–1561PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lieu AS, Howng SL (2000) Intracranial meningiomas and epilepsy: incidence, prognosis and influencing factors. Epilepsy Res 38:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Oberndorfer S, Schmal T, Lahrmann H, Urbanits S, Lindner K, Grisold W (2002) [The frequency of seizures in patients with primary brain tumors or cerebral metastases. An evaluation from the Ludwig Boltzmann Institute of Neuro-Oncology and the Department of Neurology, Kaiser Franz Josef Hospital, Vienna]. Wien Klin Wochenschr 114:911–916Google Scholar
  15. 15.
    Wu A, Weingart JD, Gallia GL et al (2017) Risk factors for preoperative seizures and loss of seizure control in patients undergoing surgery for metastatic brain tumors. World Neurosurg 104:120–128PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lynam LM, Lyons MK, Drazkowski JF et al (2007) Frequency of seizures in patients with newly diagnosed brain tumors: a retrospective review. Clin Neurol Neurosurg 109:634–638PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    You G, Sha ZY, Yan W et al (2012) Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study. Neuro Oncol 14:230–241PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lee JW, Wen PY, Hurwitz S et al (2010) Morphological characteristics of brain tumors causing seizures. Arch Neurol 67:336–342PubMedPubMedCentralGoogle Scholar
  19. 19.
    Englot DJ, Chang EF, Vecht CJ (2016) Epilepsy and brain tumors. Handb Clin Neurol 134:267–285PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fish DR, Spencer SS (1995) Clinical correlations: MRI and EEG. Magn Reson Imaging 13:1113–1117PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7:525–537PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schaller B (2005) Influences of brain tumor-associated pH changes and hypoxia on epileptogenesis. Acta Neurol Scand 111:75–83PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wolf HK, Roos D, Blumcke I, Pietsch T, Wiestler OD (1996) Perilesional neurochemical changes in focal epilepsies. Acta Neuropathol 91:376–384PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Beaumont A, Whittle IR (2000) The pathogenesis of tumour associated epilepsy. Acta Neurochir (Wien) 142:1–15CrossRefGoogle Scholar
  25. 25.
    Yuen TI, Morokoff AP, Bjorksten A et al (2012) Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology 79:883–889PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rosati A, Poliani PL, Todeschini A et al (2013) Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme. Neuro Oncol 15:618–625PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pallud J, Capelle L, Huberfeld G (2013) Tumoral epileptogenicity: how does it happen? Epilepsia 54(Suppl 9):30–34PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Aronica E, Yankaya B, Jansen GH et al (2001) Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 27:223–237PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bateman DE, Hardy JA, McDermott JR, Parker DS, Edwardson JA (1988) Amino acid neurotransmitter levels in gliomas and their relationship to the incidence of epilepsy. Neurol Res 10:112–114PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chen H, Judkins J, Thomas C et al (2017) Mutant IDH1 and seizures in patients with glioma. Neurology 88:1805–1813PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Blumcke I, Luyken C, Urbach H, Schramm J, Wiestler OD (2004) An isomorphic subtype of long-term epilepsy-associated astrocytomas associated with benign prognosis. Acta Neuropathol 107:381–388PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Danfors T, Ribom D, Berntsson SG, Smits A (2009) Epileptic seizures and survival in early disease of grade 2 gliomas. Eur J Neurol 16:823–831PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Berendsen S, Varkila M, Kroonen J et al (2016) Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol 18:700–706PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Buckner JC, Shaw EG, Pugh SL et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cairncross JG, Wang M, Jenkins RB et al (2014) Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 32:783–790PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stockhammer F, Misch M, Helms HJ et al (2012) IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure 21:194–197PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Liubinas SV, D’Abaco GM, Moffat BM et al (2014) IDH1 mutation is associated with seizures and protoplasmic subtype in patients with low-grade gliomas. Epilepsia 55:1438–1443PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Neal A, Kwan P, O’Brien TJ, Buckland ME, Gonzales M, Morokoff A (2017) IDH1 and IDH2 mutations in postoperative diffuse glioma-associated epilepsy. Epilepsy Behav 78:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Chaichana KL, Parker SL, Olivi A, Quinones-Hinojosa A (2009) Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. Clinical article. J Neurosurg 111:282–292PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sheth RD (2002) Adolescent issues in epilepsy. J Child Neurol 17(Suppl 2):2S23–22S27PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Klein M, Engelberts NH, van der Ploeg HM et al (2003) Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann Neurol 54:514–520PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Taphoorn MJ, Klein M (2004) Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3:159–168PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Batchelor TT, Byrne TN (2006) Supportive care of brain tumor patients. Hematol Oncol Clin North Am 20:1337–1361PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Auriel E, Landov H, Blatt I et al (2009) Quality of life in seizure-free patients with epilepsy on monotherapy. Epilepsy Behav 14:130–133PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Giulioni M, Galassi E, Zucchelli M, Volpi L (2005) Seizure outcome of lesionectomy in glioneuronal tumors associated with epilepsy in children. J Neurosurg 102:288–293PubMedGoogle Scholar
  48. 48.
    Giulioni M, Gardella E, Rubboli G et al (2006) Lesionectomy in epileptogenic gangliogliomas: seizure outcome and surgical results. J Clin Neurosci 13:529–535PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Giulioni M, Rubboli G, Marucci G et al (2009) Seizure outcome of epilepsy surgery in focal epilepsies associated with temporomesial glioneuronal tumors: lesionectomy compared with tailored resection. J Neurosurg 111:1275–1282PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bonney PA, Glenn CA, Ebeling PA et al (2015) Seizure freedom rates and prognostic indicators after resection of gangliogliomas: a review. World Neurosurg 84:1988–1996PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bonney PA, Boettcher LB, Conner AK et al (2016) Review of seizure outcomes after surgical resection of dysembryoplastic neuroepithelial tumors. J Neurooncol 126:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Englot DJ, Han SJ, Berger MS, Barbaro NM, Chang EF (2012) Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery 70:921–928; discussion 928PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bonney PA, Boettcher LB, Burks JD et al (2017) Rates of seizure freedom after surgical resection of diffuse low-grade gliomas. World Neurosurg 106:750–756PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chaichana KL, Pendleton C, Zaidi H et al (2013) Seizure control for patients undergoing meningioma surgery. World Neurosurg 79:515–524PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Chen WC, Magill ST, Englot DJ et al (2017) Factors associated with pre- and postoperative seizures in 1033 patients undergoing supratentorial meningioma resection. Neurosurgery 81(2):297–306PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ruda R, Magliola U, Bertero L et al (2013) Seizure control following radiotherapy in patients with diffuse gliomas: a retrospective study. Neuro Oncol 15:1739–1749PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rogers LR, Morris HH, Lupica K (1993) Effect of cranial irradiation on seizure frequency in adults with low-grade astrocytoma and medically intractable epilepsy. Neurology 43:1599–1601PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chalifoux R, Elisevich K (1996) Effect of ionizing radiation on partial seizures attributable to malignant cerebral tumors. Stereotact Funct Neurosurg 67:169–182PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Taphoorn MJ, Stupp R, Coens C et al (2005) Health-related quality of life in patients with glioblastoma: a randomised controlled trial. Lancet Oncol 6:937–944PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Koekkoek JA, Kerkhof M, Dirven L, Heimans JJ, Reijneveld JC, Taphoorn MJ (2015) Seizure outcome after radiotherapy and chemotherapy in low-grade glioma patients: a systematic review. Neuro Oncol 17:924–934PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kaloshi G, Benouaich-Amiel A, Diakite F et al (2007) Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 68:1831–1836PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pace A, Vidiri A, Galie E et al (2003) Temozolomide chemotherapy for progressive low-grade glioma: clinical benefits and radiological response. Ann Oncol 14:1722–1726PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Koekkoek JA, Dirven L, Heimans JJ et al (2015) Seizure reduction in a low-grade glioma: more than a beneficial side effect of temozolomide. J Neurol Neurosurg Psychiatry 86:366–373PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Soffietti R, Ruda R, Bradac GB, Schiffer D (1998) PCV chemotherapy for recurrent oligodendrogliomas and oligoastrocytomas. Neurosurgery 43:1066–1073PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lebrun C, Fontaine D, Bourg V et al (2007) Treatment of newly diagnosed symptomatic pure low-grade oligodendrogliomas with PCV chemotherapy. Eur J Neurol 14:391–398PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Frenay MP, Fontaine D, Vandenbos F, Lebrun C (2005) First-line nitrosourea-based chemotherapy in symptomatic non-resectable supratentorial pure low-grade astrocytomas. Eur J Neurol 12:685–690PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wu AS, Trinh VT, Suki D et al (2013) A prospective randomized trial of perioperative seizure prophylaxis in patients with intraparenchymal brain tumors. J Neurosurg 118:873–883PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Franceschetti S, Binelli S, Casazza M et al (1990) Influence of surgery and antiepileptic drugs on seizures symptomatic of cerebral tumours. Acta Neurochir (Wein) 103:47–51CrossRefGoogle Scholar
  69. 69.
    Forsyth PA, Weaver S, Fulton D et al (2003) Prophylactic anticonvulsants in patients with brain tumour. Can J Neurol Sci 30:106–112PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Dewan MC, White-Dzuro GA, Brinson PR et al (2017) The influence of perioperative seizure prophylaxis on seizure rate and hospital quality metrics following glioma resection. Neurosurgery 80:563–570PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    North JB, Penhall RK, Hanieh A, Frewin DB, Taylor WB (1983) Phenytoin and postoperative epilepsy. A double-blind study. J Neurosurg 58:672–677PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chang SM, Parney IF, Huang W et al (2005) Patterns of care for adults with newly diagnosed malignant glioma. JAMA 293:557–564PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dewan MC, Thompson RC, Kalkanis SN, Barker FG II, Hadjipanayis CG (2017) Prophylactic antiepileptic drug administration following brain tumor resection: results of a recent AANS/CNS section on tumors survey. J Neurosurg 126:1772–1778PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sirven JI, Wingerchuk DM, Drazkowski JF, Lyons MK, Zimmerman RS (2004) Seizure prophylaxis in patients with brain tumors: a meta-analysis. Mayo Clin Proc 79:1489–1494PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pulman J, Greenhalgh J, Marson AG (2013) Antiepileptic drugs as prophylaxis for post-craniotomy seizures. Cochrane Database Syst Rev 2:CD007286Google Scholar
  76. 76.
    Kuijlen JM, Teernstra OP, Kessels AG, Herpers MJ, Beuls EA (1996) Effectiveness of antiepileptic prophylaxis used with supratentorial craniotomies: a meta-analysis. Seizure 5:291–298PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Weston J, Greenhalgh J, Marson AG (2015) Antiepileptic drugs as prophylaxis for post-craniotomy seizures. Cochrane Database Syst Rev 3:CD007286Google Scholar
  78. 78.
    Glantz MJ, Cole BF, Forsyth PA et al (2000) Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54:1886–1893PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Soffietti R, Baumert BG, Bello L et al (2010) Guidelines on management of low-grade gliomas: report of an EFNS-EANO task force. Eur J Neurol 17:1124–1133PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Glauser T, Ben-Menachem E, Bourgeois B et al (2013) Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 54:551–563PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Crepeau AZ, Sirven JI (2017) Management of adult onset seizures. Mayo Clin Proc 92:306–318PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gilbert MR, Supko JG, Batchelor T et al (2003) Phase I clinical and pharmacokinetic study of irinotecan in adults with recurrent malignant glioma. Clin Cancer Res 9:2940–2949PubMedPubMedCentralGoogle Scholar
  83. 83.
    Maschio M, Albani F, Baruzzi A et al (2006) Levetiracetam therapy in patients with brain tumour and epilepsy. J Neurooncol 80:97–100PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Vecht CJ, Wagner GL, Wilms EB (2003) Interactions between antiepileptic and chemotherapeutic drugs. Lancet Neurol 2:404–409PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Oberndorfer S, Piribauer M, Marosi C, Lahrmann H, Hitzenberger P, Grisold W (2005) P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol 72:255–260PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Neef C, de Voogd-van der Straaten I (1988) An interaction between cytostatic and anticonvulsant drugs. Clin Pharmacol Ther 43:372–375PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ruegg S (2002) Dexamethasone/phenytoin interactions: neurooncological concerns. Swiss Med Wkly 132:425–426PubMedPubMedCentralGoogle Scholar
  88. 88.
    Lackner TE (1991) Interaction of dexamethasone with phenytoin. Pharmacotherapy 11:344–347PubMedPubMedCentralGoogle Scholar
  89. 89.
    Pursche S, Schleyer E, von Bonin M et al (2008) Influence of enzyme-inducing antiepileptic drugs on trough level of imatinib in glioblastoma patients. Curr Clin Pharmacol 3:198–203PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Raymond E, Brandes AA, Dittrich C et al (2008) Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 26:4659–4665PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Maschio M, Dinapoli L, Sperati F et al (2011) Levetiracetam monotherapy in patients with brain tumor-related epilepsy: seizure control, safety, and quality of life. J Neurooncol 104:205–214PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Usery JB, Michael LM II, Sills AK, Finch CK (2010) A prospective evaluation and literature review of levetiracetam use in patients with brain tumors and seizures. J Neurooncol 99:251–260PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kerkhof M, Dielemans JC, van Breemen MS et al (2013) Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol 15:961–967PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Maschio M, Zarabla A, Maialetti A et al (2017) Quality of life, mood and seizure control in patients with brain tumor related epilepsy treated with lacosamide as add-on therapy: a prospective explorative study with a historical control group. Epilepsy Behav 73:83–89PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Maschio M, Dinapoli L, Mingoia M et al (2011) Lacosamide as add-on in brain tumor-related epilepsy: preliminary report on efficacy and tolerability. J Neurol 258:2100–2104PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Brodie MJ, Whitesides J, Schiemann J, D’Souza J, Johnson ME (2016) Tolerability, safety, and efficacy of adjunctive brivaracetam for focal seizures in older patients: a pooled analysis from three phase III studies. Epilepsy Res 127:114–118PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Moseley BD, Sperling MR, Asadi-Pooya AA et al (2016) Efficacy, safety, and tolerability of adjunctive brivaracetam for secondarily generalized tonic-clonic seizures: pooled results from three phase III studies. Epilepsy Res 127:179–185PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Elger C, Koepp M, Trinka E et al (2017) Pooled efficacy and safety of eslicarbazepine acetate as add-on treatment in patients with focal-onset seizures: data from four double-blind placebo-controlled pivotal phase III clinical studies. CNS Neurosci Ther 23:961–972PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Plosker GL (2012) Perampanel: as adjunctive therapy in patients with partial-onset seizures. CNS Drugs 26:1085–1096PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    French JA, Krauss GL, Biton V et al (2012) Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304. Neurology 79:589–596PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    French JA, Krauss GL, Steinhoff BJ et al (2013) Evaluation of adjunctive perampanel in patients with refractory partial-onset seizures: results of randomized global phase III study 305. Epilepsia 54:117–125PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Krauss GL, Serratosa JM, Villanueva V et al (2012) Randomized phase III study 306: adjunctive perampanel for refractory partial-onset seizures. Neurology 78:1408–1415PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Van Nifterik KA, Van den Berg J, Slotman BJ, Lafleur MV, Sminia P, Stalpers LJ (2012) Valproic acid sensitizes human glioma cells for temozolomide and gamma-radiation. J Neurooncol 107:61–67PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hosein AN, Lim YC, Day B et al (2015) The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells. J Neurooncol 122:263–271PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chie EK, Shin JH, Kim JH, Kim HJ, Kim IA, Kim IH (2015) In vitro and in vivo radiosensitizing effect of valproic acid on fractionated irradiation. Cancer Res Treat 47:527–533PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Weller M, Gorlia T, Cairncross JG et al (2011) Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77:1156–1164PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Barker CA, Bishop AJ, Chang M, Beal K, Chan TA (2013) Valproic acid use during radiation therapy for glioblastoma associated with improved survival. Int J Radiat Oncol Biol Phys 86:504–509PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Happold C, Gorlia T, Chinot O et al (2016) Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J Clin Oncol 34:731–739PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bobustuc GC, Baker CH, Limaye A et al (2010) Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol 12:917–927PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kim YH, Kim T, Joo JD et al (2015) Survival benefit of levetiracetam in patients treated with concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide for glioblastoma multiforme. Cancer 121:2926–2932PubMedCrossRefPubMedCentralGoogle Scholar

via Epilepsy and Anticonvulsant Therapy in Brain Tumor Patients | SpringerLink

, , , , , , , ,

Leave a comment

%d bloggers like this: