Archive for category Books

[BOOK] Emerging Therapies in Neurorehabilitation II – [Chapter] Virtual Rehabilitation – Request PDF

Abstract

This chapter addresses the current state of the art of virtual rehabilitation by summarizing recent research results that focus on the assessment and remediation of motor impairments using virtual rehabilitation technology. Moreover, strengths and weaknesses of the virtual rehabilitation approach and its technical and clinical implications will be discussed. This overview is an update and extension of a previous virtual rehabilitation chapter with a similar focus. Despite tremendous advancements in virtual reality hardware in the past few years, clinical evidence for the efficacy of virtual rehabilitation methods is still sparse. All recent meta-analyses agree that the potential of virtual reality systems for motor rehabilitation in stroke and traumatic brain injury populations is evident, but that larger clinical trials are needed that address the contribution of individual aspects of virtual rehabilitation systems on different patient populations in acute and chronic stages of neurorehabilitation.

Virtual Rehabilitation | Request PDF. Available from: https://www.researchgate.net/publication/300324828_Virtual_Rehabilitation

via Virtual Rehabilitation | Request PDF

Advertisements

, , , ,

Leave a comment

[BOOK] Emerging Therapies in Neurorehabilitation II – Βιβλία Google

Εξώφυλλο
José L. PonsRafael RayaJosé González
Springer30 Οκτ 2015 – 318 σελίδες

This book reports on the latest technological and clinical advances in the field of neurorehabilitation. It is, however, much more than a conventional survey of the state-of-the-art in neurorehabilitation technologies and therapies. It was written on the basis of a week of lively discussions between PhD students and leading research experts during the Summer School on Neurorehabilitation (SSNR2014), held September 15-19 in Baiona, Spain. Its unconventional format makes it a perfect guide for all PhD students, researchers and professionals interested in gaining a multidisciplinary perspective on current and future neurorehabilitation scenarios. The book addresses various aspects of neurorehabilitation research and practice, including a selection of common impairments affecting CNS function, such as stroke and spinal cord injury, as well as cutting-edge rehabilitation and diagnostics technologies, including robotics, neuroprosthetics, brain-machine interfaces and neuromodulation.

via Emerging Therapies in Neurorehabilitation II – Βιβλία Google

, , , , , , ,

Leave a comment

[BOOK Chapter] Functional Electrical Stimulation and Its Use During Cycling for the Rehabilitation of Individuals with Stroke – Abstract+References

Advanced Technologies for the Rehabilitation of Gait and Balance DisordersAbstract

Stroke disease involves an increasing number of subjects due to the aging population. In clinical practice‚ the presence of widely accessible rehabilitative interventions to facilitate the patients’ motor recovery‚ especially in the early stages after injury when wider improvement can be gained‚ is crucial to reduce social and economical costs. The functional electrical stimulation (FES) has been investigated as a tool to promote locomotion ability in stroke patients. Particular attention was given to FES delivered during cycling‚ which is recognized as a safe and widely accessible way to provide a FES-based rehabilitative intervention in the most impaired subjects. In this chapter the neurophysiological basis of FES and its potential correlates to facilitate the long-term reorganization at both cortical and spinal level have been discussed. A discussion on clinical evidence and possible future direction is also proposed.

References

  1. 1.
    Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MSV, George MG, Hamdan AD, Higashida RT, Hoh BL, Janis LS, Kase CS, Kleindorfer DO, Lee JM, Moseley ME, Peterson ED, Turan TN, Valderrama AL, Vinters HV. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American heart association/American stroke association. Stroke. 2013;44(7):2064–89.CrossRefGoogle Scholar
  2. 2.
    WHO. The atlas of heart disease and stroke. 2004.Google Scholar
  3. 3.
    Fattore G, Torbica A, Susi A, Giovanni A, Benelli G, Gozzo M, Toso V. The social and economic burden of stroke survivors in Italy: a prospective, incidence-based, multi-centre cost of illness study. BMC Neurol. 2012;12(1):137.CrossRefGoogle Scholar
  4. 4.
    Bonita R, Beaglehole R, Bonita R, Beaglehole R. Recovery of motor function after stroke. Stroke. 1988;19:1497–500.CrossRefGoogle Scholar
  5. 5.
    Brown JA. Recovery of motor function after stroke. Prog Brain Res. 2006;157:223–8.CrossRefGoogle Scholar
  6. 6.
    Ward NS. Neural plasticity and recovery of function. Prog Brain Res. 2005;150:527–35.CrossRefGoogle Scholar
  7. 7.
    Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005;7:327–60.CrossRefGoogle Scholar
  8. 8.
    Ambrosini E, Ferrante S, Ferrigno G, Molteni F, Pedrocchi A. Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):320–30.CrossRefGoogle Scholar
  9. 9.
    Ambrosini E, Ferrante S, Pedrocchi A, Ferrigno G, Molteni F. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial. Stroke. 2011;42(4):1068–73.CrossRefGoogle Scholar
  10. 10.
    Ferrante S, Pedrocchi A, Ferrigno G, Molteni F. Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner. Eur J Phys Rehabil Med. 2008;44(2):159–67.Google Scholar
  11. 11.
    Kafri M, Laufer Y. Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke. Ann Biomed Eng. 2015;43(2):451–66.CrossRefGoogle Scholar
  12. 12.
    Gater DR, Dolbow D, Tsui B, Gorgey AS. Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation. 2011;28(3):231–48.Google Scholar
  13. 13.
    Barrett CL, Mann GE, Taylor PN, Strike P. A randomized trial to investigate the effects of functional electrical stimulation and therapeutic exercise on walking performance for people with multiple sclerosis. Multiple Sclerosis J. 2009;15(4):493–504.CrossRefGoogle Scholar
  14. 14.
    Peri E, Ambrosini E, Pedrocchi A, Pagliano E, Riva D, Baranello G, Arnoldi MT, Foscan M, Corlatti A, Marchi A, Ferrigno G, Ferrante S. Volitional cycling augmented by functional electrical stimulation in hemiparetic adolescents: a case series study. J Autom Control. 2013;21(1):37–42.CrossRefGoogle Scholar
  15. 15.
    Trevisi E, Gualdi S, De Conti C, Salghetti A, Martinuzzi A, Pedrocchi A, Ferrante S. Cycling induced by functional electrical stimulation in children affected by cerebral palsy: case report. Eur J Phys Rehabil Med. 2012;48(1):135–45.Google Scholar
  16. 16.
    Singer B. Functional electrical stimulation of the extremities in the neurological patient: a review. Aust J Physiotherapy. 1987;33(1):33–42.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Harvey RL. Improving poststroke recovery: Neuroplasticity and task-oriented training. Curr Treat Options Cardiovasc Med. 2009;11(3):251–9.CrossRefGoogle Scholar
  18. 18.
    Brown DA, Nagpal S, Chi S. Limb-loaded cycling program for locomotor intervention following stroke. Phys Ther. 2005;85(2):159–68.Google Scholar
  19. 19.
    Ferrante S, Ambrosini E, Ravelli P, Guanziroli E, Molteni F, Ferrigno G, Pedrocchi A. A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients. J Neuroeng Rehabil. 2011;8(1):47.CrossRefGoogle Scholar
  20. 20.
    Burnfield JM, Shu Y, Buster T, Taylor A. Similarity of joint kinematics and muscle demands between elliptical training and walking: implications for practice. Phys Ther. 2010;90(2):289–305.CrossRefGoogle Scholar
  21. 21.
    Grill WM, Mortimer JT. Stimulus waveforms for selective neural stimulation. IEEE Eng Med Biol Mag. 1995;14(4):375–85.CrossRefGoogle Scholar
  22. 22.
    McNeal DR. Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng. 1976;BME-23(4):329–337.Google Scholar
  23. 23.
    Kandel ER, Schwartz JH, Jessell TM. Principles of neural science 4th ed. New York: McGraw-Hill, Health Professions Division. 2000.Google Scholar
  24. 24.
    Knaflitz M, Merletti R, De Luca CJ. Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol. 1990;68(4):1657–67.CrossRefGoogle Scholar
  25. 25.
    Farina D, Blanchietti A, Pozzo M, Merletti R. M-wave properties during progressive motor unit activation by transcutaneous stimulation. J Appl Physiol. 2004;97(2):545–55.CrossRefGoogle Scholar
  26. 26.
    Mortimer JT. Comprehensive physiology. Hoboken, NJ, USA: Wiley; 2011.Google Scholar
  27. 27.
    Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol. 2011;111(10):2399–407.CrossRefGoogle Scholar
  28. 28.
    Ambrosini E, Ferrante S, Pedrocchi A. Design of myocontrolled neuroprosthesis: tricks and pitfalls. Appl Challenges Adv Electromyogr Signal Process. IGI Global, 2014;275–303.Google Scholar
  29. 29.
    Sheffler LR, Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve. 2007;35(5):562–90.CrossRefGoogle Scholar
  30. 30.
    Smith GV, Alon G, Roys SR, Gullapalli RP. Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Exp Brain Res. 2003;150(1):33–9.CrossRefGoogle Scholar
  31. 31.
    Francis S, Lin X, Aboushoushah S, White TP, Phillips M, Bowtell R, Constantinescu CS. fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion. Neuroimage. 2009;44(2):469–79.CrossRefGoogle Scholar
  32. 32.
    Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.CrossRefGoogle Scholar
  33. 33.
    Rushton DN. Functional electrical Stimulation and rehabilitation—an hypothesis. Med Eng Phys. 2003;25:75–8.CrossRefGoogle Scholar
  34. 34.
    Barsi GI, Popovic DB, Tarkka IM, Sinkjær T, Grey MJ. Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp Brain Res. 2008;191(1):57–66.CrossRefGoogle Scholar
  35. 35.
    Iftime-Nielsen SD, Christensen MS, Vingborg RJ, Sinkjær T, Roepstorff A, Grey MJ. Interaction of electrical stimulation and voluntary hand movement in SII and the cerebellum during simulated therapeutic functional electrical stimulation in healthy adults. Hum Brain Mapp. 2012;33(1):40–9.CrossRefGoogle Scholar
  36. 36.
    Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, Ferrigno G, Friston K, Pedrocchi A, Ward NS. Re-thinking the role of motor cortex: context-sensitive motor outputs? Neuroimage. 2014;91:366–74.CrossRefGoogle Scholar
  37. 37.
    Gandolla M, Ward NS, Molteni F, Guanziroli E, Ferrigno G, Pedrocchi A. The neural correlates of long-term carryover following functional electrical stimulation for stroke. 2016; (2016).Google Scholar
  38. 38.
    Pomeroy VM, King L, Pollock A, Baily-Hallam A, Langhorne P. Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst Rev. 2006; (2).Google Scholar
  39. 39.
    Kluding PM, Dunning K, O’Dell MW, Wu SS, Ginosian J, Feld J, McBride K. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke. 2013;44(6):1660–9.CrossRefGoogle Scholar
  40. 40.
    Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–5.Google Scholar
  41. 41.
    Bogataj U, Gros N, Kljajic M, Acimovic R, Malezic M. The rehabilitation of gait in patients with hemiplegia: a comparison between conventional therapy and multichannel functional electrical stimulation therapy. Phys Ther. 1995;75(6):490–502.CrossRefGoogle Scholar
  42. 42.
    Fields RW. Electromyographically triggered electric muscle stimulation for chronic hemiplegia. Arch Phys Med Rehabil. 1987;68(7):407–14.Google Scholar
  43. 43.
    Cozean CD, Pease WS, Hubbell SL. Biofeedback and functional electric stimulation in stroke rehabilitation. Arch Phys Med Rehabil. 1988;69(6):401–5.Google Scholar
  44. 44.
    Mazzocchio R, Meunier S, Ferrante S, Molteni F, Cohen LG. Cycling, a tool for locomotor recovery after motor lesions? NeuroRehabilitation. 2008;23(1):67–80.Google Scholar
  45. 45.
    Meunier S, Kwon J, Russmann H, Ravindran S, Mazzocchio R, Cohen L. Spinal use-dependent plasticity of synaptic transmission in humans after a single cycling session. J Physiol. 2007;579(Pt 2):375–88.CrossRefGoogle Scholar
  46. 46.
    Katz-Leurer M, Sender I, Keren O, Dvir Z. The influence of early cycling training on balance in stroke patients at the subacute stage. Results of a preliminary trial. Clin Rehabil. 2006;20(5):398–405.CrossRefGoogle Scholar
  47. 47.
    Alon G, Conroy VM, Donner TW. Intensive training of subjects with chronic hemiparesis on a motorized cycle combined with functional electrical stimulation (FES): a feasibility and safety study. Physiother. Res. Int. 2011;16(2):81–91.CrossRefGoogle Scholar
  48. 48.
    del-Ama AJ, Koutsou AD, Moreno JC, delos-Reyes A, Gil-Agudo N, Pons JL. Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev. 2012;49(4):497.CrossRefGoogle Scholar

via Functional Electrical Stimulation and Its Use During Cycling for the Rehabilitation of Individuals with Stroke | SpringerLink

, , , ,

Leave a comment

[BOOK Chapter] The “Arm” Line of Devices for Neurological Rehabilitation: Engineering Book Chapter – Abstract

Abstract

In the modern scenario of neurological rehabilitation, which requires affordable solutions oriented toward promoting home training, the Institute of Industrial Technologies and Automation (ITIA) of the Italian National Research Council (CNR) developed a line of prototypal devices for the rehabilitation of the upper limb, called “Arm.” Arm devices were conceived to promote rehabilitation at affordable prices by capturing all the main features of the state-of-the-art devices. In fact, Arm devices focus on the main features requested by a robot therapist: mechanical adaptation to the patient, ranging from passive motion to high transparency, assist-as-needed and resistive modalities; proper use of sensors for performance monitoring; easy-to-use, modular, and adaptable design. These desirable features are combined with low-cost, additive manufacturing procedures, with the purpose of meeting the requirements coming from research on neuro-motor rehabilitation and motor control and coupling them with the recent breakthrough innovations in design and manufacturing.

The “Arm” Line of Devices for Neurological Rehabilitation

Copyright: © 2018 |Pages: 30

DOI: 10.4018/978-1-5225-2993-4.ch007

 

 

Introduction

 The use of robotic devices for upper-limb neuro-motor rehabilitation is usual practice in clinical centers. In respect to conventional therapies, robots allow to increase training intensity and help patients to promote their active contribution. Furthermore, robots can act as measurers of patients’ performances and adapt their interaction modalities to the emerging needs during the rehabilitation course. Robots like ARMin, MIT Manus, Armeo Spring, Braccio di Ferro, represent the state of the art devices for rehabilitation of the upper-limb and for promoting motor recovery. According to the available assessments and studies in the literature, their efficacy is slightly/moderately higher than the one of conventional therapies. Furthermore, robots are used in research to learn more about physiological and pathological motor control and neuromuscular diseases. Unfortunately, while being the state of the art devices for neuro-motor stimulation and training, such robots are very expensive and not compliant to user-friendly requirements that are needed for semi-autonomous home use. Consequently, they can be used only in clinical environments, under the supervision of medical personnel. Furthermore, sanitary costs related to rehabilitation are increasing and clinical centers can hardly support their burden. The possibility of delocalizing rehabilitation from clinical centers opens the chance for training performed in home environment, with time and costs savings for both the sanitary system and patients. In this scenario, which requires affordable solutions oriented toward promoting home training, the Institute of Industrial Technologies and Automation (ITIA) of the Italian National Research Council (CNR) developed a line of prototypal devices for the rehabilitation of the upper-limb, called -ArmArm devices were conceived to test the possibility of promoting rehabilitation at affordable prices but capturing all the main features of the state of the art devices. In fact, Arm devices focus on the main features requested by a robot therapist: mechanical adaptation to the patient, ranging from passive motion to high transparency, assist-as-needed and resistive modalities; proper use of sensors for performance monitoring; easy-to-use, modular and adaptable design. These desirable features are combined with low-cost, additive manufacturing procedures, with the purpose of meeting the requirements coming from research on neuro-motor rehabilitation and motor control and coupling them with the recent breakthrough innovations in design and manufacturing. Arm devices cover both clinical and home-oriented training and are designed for adaptation to patients with different motor impairment.

The Arm prototypes are:

  • • LINarm: linear device, freely orientable in space, suitable for functional movements. It features a variable stiffness actuation, allowing to adapt the mechanical behavior of the device to patients’ needs. Functional Electrical Stimulation, simple Virtual Environments and a Patient Model, gathering data from integrated sensors and modulating the level of assistance, are integrated in the set-up. The LINarm++ Echord++ Project ended in October 2016 and guided the development of a second, more refined prototype, enhancing the original concept.
  • • PLANarm: planar device, freely orientable in space, suitable for planar functional movements. The state of the art planar robots used in literature for motor control and motor learning research inspired PLANarm. It features a variable stiffness actuation, allowing adapting the mechanical behavior of the device depending on patients’ needs.
  • • DUALarm: Low-Cost device for bimanual rehabilitation, exploiting the capability of the less affected limb to provide rehabilitation to the more affected limb. DUALarm is completely realized in 3D printing technology and aims at being an easy-to-use, low-cost, open-source project. Currently, reaching movements can be trained, but the device is conceived to be suitable for training of other functional gestures.
  • • LIGHTarm: Exoskeleton for the rehabilitation of the upper-limb, designed in two versions: LIGHTarm, not actuated, and conceived to support the weight of the impaired limb. The mechanical design includes high backdrivability, focusing on shoulder rhythm and elbow singular configurations.
  • • VIRTUALarm: Kinect One-based platform for motor monitoring, including body and limb tracking and a biomechanical evaluation of the performance in relation to databases of healthy subjects. Assessments include range of motion, motion dynamics, effort, motor control indexes, body segments barycenter tracking.

via The “Arm” Line of Devices for Neurological Rehabilitation: Engineering Book Chapter | IGI Global

, , , , , ,

Leave a comment

[BOOK] Integrative Psychiatry and Brain Health – Google Books

Front Cover

Daniel A. MontiAndrew B. NewbergAndrew Weil
Oxford University Press, 2018 – Medical – 616 pages
Integrative Medicine is an emerging discipline that not only bridges the existing disciplines of psychiatry psychology, but provides a scientifically-based framework that synthesizes the rest of physiology, biochemistry and other health dimensions such as social support and spirituality, which collectively contribute to brain and body health and overall well-being. Patients who have not tolerated or not responded optimally to traditional treatments are also good candidates for integrative approaches. This new edition of Integrative Psychiatry and Brain Health reflects the tremendous advances in science that allude to mechanisms of action that weave together seemingly unrelated disciplines for the promotion of health and wellness.Part of the Weil Integrative Medicine Library, this volume provides a rational and evidence-based approach to the integrative therapy of mental disorders, integrating the principles of alternative and complementary therapies into the principles and practice of conventional psychiatry and psychology. Integrative Psychiatry and Brain Health examines what works and what doesn’t, and offers practical guidelines for physicians to incorporate integrative medicine into their practice and to advise patients on reasonable and effective therapies. The text discusses areas of controversy and identifies areas of uncertainty where future research is needed. Chapters also cite the best available evidence for both the safety and the efficacy of all therapies discussed. The information is presented in accessible and easy-to-read formats, including clinical pearls and key points.

Preview this book 

 

via Integrative Psychiatry and Brain Health – Google Books

, ,

Leave a comment

[BOOK] Spasticity: Diagnosis and Management – Google Books

Front Cover
Allison Brashear, MD
Demos Medical PublishingAug 31, 2010 – Medical – 448 pages

A Doody’s Core Title 2012

Spasticity: Diagnosis and Management is the first book solely dedicated to the diagnosis and treatment of spasticity. This pioneering work defines spasticity in the broad context of Upper Motor Neuron Syndrome and focuses not on a single component, but on the entire constellation of conditions that make up the UMNS and often lead to disability.

Spasticity: Diagnosis and Management clearly defines the process for the diagnosis of spasticity, the basic science behind its pathophysiology, the measurement tools used for evaluation, and reviews the available treatment options. Divided into five sections, this comprehensive clinical resource provides a roadmap for assessing the complicated picture of spasticity and choosing the appropriate interventions. Therapies including oral medications, intrathecal baclofen, botulinum toxin and phenol, and surgical options are thoroughly discussed, as are non-medical therapies and the role of the emerging technologies. The full spectrum of diseases involving spasticity in adults and children and the unique diagnostic and management challenges they present is addressed by experienced clinicians. This text is a one-stop source for physicians, therapists and other members of the spasticity management team tasked with the goal of improving patient care and outcomes.

Special Features of Spasticity: Diagnosis and Management include

  • In-depth coverage of diagnoses, interventions, and outcomes across multiple pathologies
  • Tools and clinical measurements for patient assessment
  • Treatment-focused chapters outlining current medical and other therapeutic options
  • Illustrated review of limb anatomy
  • Hands-on guidance to chemodenervation techniques with botulinum toxin and phenol, and ITB management
  • Disease-based chapters devoted to the full range of clinical conditions involving spasticity in adults.and children
  • Multidisciplinary perspective supporting a team approach to care

Preview this book »

via Spasticity: Diagnosis and Management – Google Books

, ,

Leave a comment

[BOOK Chapter] Biomechanics of the Upper Limb – Google Books

The BOOK —> Atlas of Orthoses and Assistive Devices E-Book – Joseph Webster, Douglas Murphy – Google Books

 Go to Chapter 11: Biomechanics of the Upper Limb

 

, , , , ,

Leave a comment

[BOOK] Seidel’s Physical Examination Handbook – E-Book: An Interprofessional Approach – Google Books

Front CoverSeidel’s Physical Examination Handbook – E-BookAn Interprofessional Approach

Elsevier Health SciencesNov 30, 2017 – Medical – 336 pages

 

 

via Seidel’s Physical Examination Handbook – E-Book: An Interprofessional Approach – Jane W. Ball, Joyce E. Dains, John A. Flynn, Barry S. Solomon, Rosalyn W. Stewart – Google Books

, , ,

Leave a comment

[BOOK] Atlas of Orthoses and Assistive Devices E-Book – Google Books

 

Front Cover
Elsevier Health SciencesNov 24, 2017 – Medical – 672 pages

Advances in the material sciences, 3D printing technology, functional electrical stimulation, smart devices and apps, FES technology, sensors and microprocessor technologies, and more have lately transformed the field of orthotics, making the prescription of these devices more complex than ever beforeAtlas of Orthoses and Assistive Devices, 5th Edition, brings you completely up to date with these changes, helping physiatrists, orthopaedic surgeons, prosthetists, orthotists, and other rehabilitative specialists work together to select the appropriate orthotic device for optimal results in every patient.

 

 

via Atlas of Orthoses and Assistive Devices E-Book – Joseph Webster, Douglas Murphy – Google Books

, , , , ,

Leave a comment

[BOOK Chapter] Hand Rehabilitation after Chronic Brain Damage: Effectiveness, Usability and Acceptance of Technological Devices: A Pilot Study – Full Text

By Marta Rodríguez-Hernández, Carmen Fernández-Panadero, Olga López-Martín and Begoña Polonio-López
DOI: 10.5772/67532

READ CHAPTER

Download as PDF

via Hand Rehabilitation after Chronic Brain Damage: Effectiveness, Usability and Acceptance of Technological Devices: A Pilot Study | InTechOpen

 

, , , , , , , ,

Leave a comment

%d bloggers like this: