Archive for category Hemianopsia

[Abstract] Computer-Based Cognitive Rehabilitation in Patients with Visuospatial Neglect or Homonymous Hemianopia after Stroke

Abstract

Objectives: The purpose of this pilot study was to investigate the feasibility and effects of computer-based cognitive rehabilitation (CBCR) in patients with symptoms of visuospatial neglect or homonymous hemianopia in the subacute phase following stroke.

Method: A randomized, controlled, unblinded cross-over design was completed with early versus late CBCR including 7 patients in the early intervention group (EI) and 7 patients in the late intervention group (LI). EI received CBCR training immediately after inclusion (m = 19 days after stroke onset) for 3 weeks and LI waited for 3 weeks after inclusion before receiving CBCR training for 3 weeks (m = 44 days after stroke onset).

Results: CBCR improved visuospatial symptoms after stroke significantly when administered early in the subacute phase after stroke. The same significant effect was not found when CBCR was administered later in the rehabilitation. The difference in the development of the EI and LI groups during the first 3 weeks was not significant, which could be due to a lack of statistical power. CBCR did not impact mental well-being negatively in any of the groups. In the LI group, the anticipation of CBCR seemed to have a positive impact of mental well-being.

Conclusion: CBCR is feasible and has a positive effect on symptoms in patients with visuospatial symptoms in the subacute phase after stroke. The study was small and confirmation in larger samples with blinded outcome assessors is needed.

via Computer-Based Cognitive Rehabilitation in Patients with Visuospatial Neglect or Homonymous Hemianopia after Stroke – ScienceDirect

, , , , , ,

Leave a comment

[Abstract] Interhemispheric visual competition after multisensory reversal of hemianopia

Abstract

Unilateral lesions of visual cortex have the secondary consequence of suppressing visual circuits in the midbrain superior colliculus (SC), collectively producing blindness in contralesional space (“hemianopia”). Recent studies have demonstrated that SC visual responses and contralesional vision can be reinstated by a non‐invasive multisensory training procedure in which spatiotemporally concordant visual‐auditory pairs are repeatedly presented within the blind hemifield. Despite this recovery of visual responsiveness, the loss of visual cortex was expected to result in permanent deficits in that hemifield, especially when visual events in both hemifields compete for attention and access to the brain’s visuomotor circuitry. This was evaluated in the present study in a visual choice paradigm in which the two visual hemifields of recovered cats were simultaneously stimulated with equally‐valent visual targets. Surprisingly, the expected disparity was not found, and some animals even preferred stimuli presented in the previously blind hemifield. This preference persisted across multiple stimulus intensity levels and there was no indication that animals were less aware of cues in the previously blind hemifield than in its spared counterpart. Furthermore, when auditory cues were combined with visual cues, the enhanced performance they produced on a visual task was no greater in the normal than in the previously blind hemifield. These observations suggest that the multisensory rehabilitation paradigm revealed greater inherent visual information processing potential in the previously blind hemifield than was believed possible given the loss of visual cortex.

 

via Interhemispheric visual competition after multisensory reversal of hemianopia – Dakos – – European Journal of Neuroscience – Wiley Online Library

, , , , , ,

Leave a comment

[VIDEO] Fitting and Training Patients with Peripheral Prisms – YouTube

This video outlines the fitting and training process for The Peli Lens for Homonymous Hemianopsia

via Fitting and Training Patients with Peripheral Prisms – YouTube

, , , , , ,

Leave a comment

[Abstract] A qualitative exploration of the effect of visual field loss on daily life in home-dwelling stroke survivors

To explore the effect of visual field loss on the daily life of community-dwelling stroke survivors.

A qualitative interview study.

Adult stroke survivors with visual field loss of at least six months’ duration.

Semi-structured interviews were conducted with a non-purposive sample of 12 stroke survivors in their own homes. These were recorded, transcribed verbatim and analyzed with the framework method, using an inductive approach.

Two key analytical themes emerged. ‘Perception, experience and knowledge’ describes participant’s conflicted experience of having knowledge of their impaired vision but lacking perception of that visual field loss and operating under the assumption that they were viewing an intact visual scene when engaged in activities. Inability to recognize and deal with visual difficulties, and experiencing the consequences, contributed to their fear and loss of self-confidence. ‘Avoidance and adaptation’ were two typologies of participant response to visual field loss. Initially, all participants consciously avoided activities. Some later adapted to vision loss using self-directed head and eye scanning techniques.

Visual field loss has a marked impact on stroke survivors. Stroke survivors lack perception of their visual loss in everyday life, resulting in fear and loss of confidence. Activity avoidance is a common response, but in some, it is replaced by self-initiated adaptive techniques.

 

via A qualitative exploration of the effect of visual field loss on daily life in home-dwelling stroke survivors – Christine Hazelton, Alex Pollock, Anne Taylor, Bridget Davis, Glyn Walsh, Marian C Brady, 2019

, , , , , ,

Leave a comment

[VIDEO] Assessment of Visual Fields Video: Diane Dirette – YouTube

Watch a demonstration of assessing visual fields.

Read FREE related article: https://www.medbridgeeducation.com/h/…

Visual Deficits:Now You See It, Now You Don’t- A Clinical Pearl by Diane Powers Dirette, PhD, OTL

Visual deficits match many diagnoses and, if undetected, can be mistaken for other problems – e.g. sensory, motor, balance and cognitive deficits. It’s critical, therefore, that therapists know how to complete a basic visual screening and to interpret the results. For example, how can you tell homonymous hemianopia apart from unilateral inattention? The screening tools are virtually the same, but the screening results differ subtly.

via Assessment of Visual Fields Video: Diane Dirette | MedBridge – YouTube

, , , ,

Leave a comment

[VIDEO] How to simulate HH – YouTube

Quick and easy simulation of homonymous hemianopia/homonymous hemianopsia. Great to show loved ones and caregivers the dramatic nature of stroke related visual field loss.

via How to simulate HH – YouTube

, , , , , ,

Leave a comment

[VIDEO] Visual pathway lesion – YouTube

Right optic nerve lesion➡Blindness of Right eye

Left optic nerve lesion➡Blindness of  left eye

Lateral part of optic chiasma lesion➡Binasal Hemianopia

Medial Part of optic chiasma lesion➡ Bitemporal Hemianopia

Right Optic tract lesion➡Left Homonymous Hemianopia

via Visual pathway lesion – YouTube

, , , ,

Leave a comment

[Abstract] A qualitative exploration of the effect of visual field loss on daily life in home-dwelling stroke survivors

To explore the effect of visual field loss on the daily life of community-dwelling stroke survivors.

A qualitative interview study.

Adult stroke survivors with visual field loss of at least six months’ duration.

Semi-structured interviews were conducted with a non-purposive sample of 12 stroke survivors in their own homes. These were recorded, transcribed verbatim and analyzed with the framework method, using an inductive approach.

Two key analytical themes emerged. ‘Perception, experience and knowledge’ describes participant’s conflicted experience of having knowledge of their impaired vision but lacking perception of that visual field loss and operating under the assumption that they were viewing an intact visual scene when engaged in activities. Inability to recognize and deal with visual difficulties, and experiencing the consequences, contributed to their fear and loss of self-confidence. ‘Avoidance and adaptation’ were two typologies of participant response to visual field loss. Initially, all participants consciously avoided activities. Some later adapted to vision loss using self-directed head and eye scanning techniques.

Visual field loss has a marked impact on stroke survivors. Stroke survivors lack perception of their visual loss in everyday life, resulting in fear and loss of confidence. Activity avoidance is a common response, but in some, it is replaced by self-initiated adaptive techniques.

via A qualitative exploration of the effect of visual field loss on daily life in home-dwelling stroke survivors – Christine Hazelton, Alex Pollock, Anne Taylor, Bridget Davis, Glyn Walsh, Marian C Brady, 2019

, , , , ,

Leave a comment

[VIDEO] Understanding Bitemporal Hemianopia – YouTube

In this video I explain all about bitemporal hemianopia. This is a condition that you might find in patients with pituitary tumours and acromegaly when the tumour grows large enough to press on the optic chiasm. This space occupying lesion causes compression and interrupts the signals innervating the inner portion of the retina, which is responsible for sensing the visual signals from the outer portion of the visual fields. This video is intended to help with the education and understanding of students of healthcare professions only and is not medical advice. For medical advice see your doctor or other healthcare professional. Whilst significant effort has been taken to make the information accurate it cannot be guaranteed.

via Understanding Bitemporal Hemianopia – YouTube

, ,

Leave a comment

[Abstract] Using Vision to Study Poststroke Recovery and Test Hypotheses About Neurorehabilitation

Approximately one-third of stroke patients suffer visual field impairment as a result of their strokes. However, studies using the visual pathway as a paradigm for studying poststroke recovery are limited. In this article, we propose that the visual pathway has many features that make it an excellent model system for studying poststroke neuroplasticity and assessing the efficacy of therapeutic interventions. First, the functional anatomy of the visual pathway is well characterized, which makes it well suited for functional neuroimaging studies of poststroke recovery. Second, there are multiple highly standardized and clinically available diagnostic tools and outcome measures that can be used to assess visual function in stroke patients. Finally, as a sensory modality, the assessment of vision is arguably less likely to be affected by confounding factors such as functional compensation and patient motivation. Given these advantages, and the general similarities between poststroke visual field recovery and recovery in other functional domains, future neurorehabilitation studies should consider using the visual pathway to better understand the physiology of neurorecovery and test potential therapeutics.

via Using Vision to Study Poststroke Recovery and Test Hypotheses About Neurorehabilitation – Ania Busza, Colleen L. Schneider, Zoë R. Williams, Bradford Z. Mahon, Bogachan Sahin, 2019

, , , , ,

Leave a comment

%d bloggers like this: