Archive for category cognitive

[ARTICLE] Neurofeedback as a form of cognitive rehabilitation therapy following stroke: A systematic review – Full Text

Neurofeedback therapy (NFT) has been used within a number of populations however it has not been applied or thoroughly examined as a form of cognitive rehabilitation within a stroke population.

Objectives for this systematic review included:

  • i) identifying how NFT is utilized to treat cognitive deficits following stroke,
  • ii) examining the strength and quality of evidence to support the use of NFT as a form of cognitive rehabilitation therapy (CRT) and
  • iii) providing recommendations for future investigations.

Searches were conducted using OVID (Medline, Health Star, Embase + Embase Classic) and PubMed databases. Additional searches were completed using the Cochrane Reviews library database, Google Scholar, the University of Toronto online library catalogue, ClinicalTrials.gov website and select journals. Searches were completed Feb/March 2015 and updated in June/July/Aug 2015. Eight studies were eligible for inclusion in this review.

Studies were eligible for inclusion if they:

  • i) were specific to a stroke population,
  • ii) delivered CRT via a NFT protocol,
  • iii) included participants who were affected by a cognitive deficit(s) following stroke (i.e. memory loss, loss of executive function, speech impairment etc.).

NFT protocols were highly specific and varied within each study. The majority of studies identified improvements in participant cognitive deficits following the initiation of therapy. Reviewers assessed study quality using the Downs and Black Checklist for Measuring Study Quality tool; limited study quality and strength of evidence restricted generalizability of conclusions regarding the use of this therapy to the greater stroke population.

Progression in this field requires further inquiry to strengthen methodology quality and study design. Future investigations should aim to standardize NFT protocols in an effort to understand the dose-response relationship between NFT and improvements in functional outcome. Future investigations should also place a large emphasis on long-term participant follow-up.

Introduction

In 2011, stroke was identified as the third leading cause of death among Canadians (5.5%, 13 283 deaths), and considered to be the leading cause of neurological disability in Canadian adults [12]. Although stroke occurrence is most common in individuals aged 70 and older, stroke incidence for individuals over the age of 50 has increased by 24% and 13% in individuals over the age of 60, in the last decade [3]. Following a stroke, patients typically enter rehabilitation programs (i.e. physical therapy, occupational therapy, etc.) to address a multitude of physical, emotional and cognitive deficits [45]. Many rehabilitation interventions initiated following stroke primarily target functional motor impairments. In reviewing the literature, few investigations have been published that aim to target cognitive deficits, despite 40% of stroke survivors experiencing a decline in cognitive function (especially memory) following stroke [6].

The brain is a highly complex and organized organ therefore the extent of impairment and deficits that follow stroke are largely dependent on lesion severity and location [7]. Physiologically these impairments are a result of the loss of neuronal circuits and connections linked to the relevant sensory, motor, and cognitive functions [89]. Furthermore, it is thought that the neurological recovery that occurs following a stroke is a direct result of brain plasticity and it’s ability to repair and reorganize [10]. Some evidence exists for the initiation of reparative functions in the brain in as little as a few hours following a stroke [1112]. In respect to recovery trajectories following stroke, ninety-five percent of stroke patients reach their peak language recovery within 6 weeks of a stroke, and within 3 months for hemispatial neglect [1314]. Deficits that do not spontaneously resolve contribute to the large number of individuals requiring long term care following stroke (i.e. rehabilitative therapy) [1516]. Occupational and physical rehabilitation programs target functional and mobility issues however, in addition to these impairments patients experience a wide range of cognitive and neurological deficits. Individuals with impairments of this nature often require cognitive rehabilitation therapy (CRT).

CRT encompasses any intervention targeting the restoration, remediation and adaptation of cognitive functions including: attention, concentration, memory, comprehension, communication, reasoning, problem solving, planning, initiation, judgement, self-monitoring and awareness [17]. CRT can be offered in a variety of settings such as rehabilitation hospitals, community care facilities, private residences as well as the workplace [18]. Although cognitive therapy has been around since the early 19th century, the 1970’s marked the most recent biofeedback movement in CRT [18]. Traditionally used to treat muscular impairments (via electromyography (EMG) feedback) biofeedback has taken on a new form known as neurofeedback therapy (NFT). NFT targets the brain and cognitive functions through the use of electroencephalography (EEG), hence neurofeedback is sometimes referred to as EEG biofeedback [19]. In classical NFT, EEG and brainwave activity is provided as a visual or auditory cue to the user [6]. Using these cues the user can consciously adapt their brainwave activity to reach targeted training thresholds. NFT relies on operant conditioning to stimulate the neuroplastic abilities of the brain [2021]. Physiologically stimulating specific band frequencies over damaged areas stimulates cortical metabolism [19]. NFT is also used to counter excessive slow wave activity (i.e. theta waves and sometimes alpha waves) that typically follow stroke [21]. An alternative form of NFT known as nonlinear dynamical neurofeedback has also been used to restore homeostasis to the brain. This form of NFT requires no conscious effort from the participant to adapt their brainwaves in any particular direction (i.e. the participant maintains a passive role). Modalities like NeurOptimal® utilize Functional Targeting to provide the brain with “… information about itself which allows the brain to assemble it’s own, best organizing strategies moment by moment” [22]. In the context of this review, the studies included herein concern the use of classical NFT only.

To date, NFT has been used extensively to treat cognitive deficits associated with other neurological disorders and illnesses including: mild traumatic brain injury [23], ADD/ADHD [24], Epilepsy [25], Autism Spectrum Disorders [2627], Dyslexia [28], Fibromyalgia [29], Depression [30], and opiate additions [31]. Despite promising NFT outcomes within these populations, NFT has not been thoroughly evaluated for use in a stroke population. The aim of this systematic review was to thoroughly evaluate the available evidence pertinent to understanding the effectiveness of NFT as a form of CRT following stroke. To achieve this objective a number of research questions were established to guide this review:

  1. Among a stroke population, how is NFT utilized to treat cognitive deficits?
  2. Among identified NFT interventions targeting a stroke population, what is the quality and strength of evidence to support the use of NFT as a form of CRT following stroke?
  3. Based on the available NFT evidence for use in stroke populations, what recommendations can be made for future research?

 

The primary outcome of interest in this review was to identify if cognitive symptom complaints could be ameliorated following the initiation of NFT in a sub-acute and chronic post-stroke population. Secondary outcomes aimed to assess study quality, methodology and strength of support for use of NFT in this population.

Continue —> Neurofeedback as a form of cognitive rehabilitation therapy following stroke: A systematic review

Fig 1. PRISMA flow diagram.

, , ,

Leave a comment

[ARTICLE] Effects of neurofeedback on the short-term memory and continuous attention of patients with moderate traumatic brain injury: A preliminary randomized controlled clinical trial – Full Text

Abstract

Purpose

There are some studies which showed neurofeedback therapy (NFT) can be effective in clients with traumatic brain injury (TBI) history. However, randomized controlled clinical trials are still needed for evaluation of this treatment as a standard option. This preliminary study was aimed to evaluate the effect of NFT on continuous attention (CA) and short-term memory (STM) of clients with moderate TBI using a randomized controlled clinical trial (RCT).

Methods

In this preliminary RCT, seventeen eligible patients with moderate TBI were randomly allocated in two intervention and control groups. All the patients were evaluated for CA and STM using the visual continuous attention test and Wechsler memory scale-4th edition (WMS-IV) test, respectively, both at the time of inclusion to the project and four weeks later. The intervention group participated in 20 sessions of NFT through the first four weeks. Conversely, the control group participated in the same NF sessions from the fifth week to eighth week of the project.

Results

Eight subjects in the intervention group and five subjects in the control group completed the study. The mean and standard deviation of participants’ age were (26.75±15.16) years and (27.60±8.17) years in experiment and control groups, respectively. All of the subjects were male. No significant improvement was observed in any variables of the visual continuous attention test and WMS-IV test between two groups (p≥0.05).

Conclusion

Based on our literature review, it seems that our study is the only study performed on the effect of NFT on TBI patients with control group. NFT has no effect on CA and STM in patients with moderate TBI. More RCTs with large sample sizes, more sessions of treatment, longer time of follow-up and different protocols are recommended.


Introduction

Traumatic brain injury (TBI) means an injury to the brain that is caused by an external physical force. It is well known that TBI is an important cause of mortality and morbidity and it is reported that each year about 1.7 million people sustain a TBI in USA. Some of them die (about 50,000) and some other experience long-term disability (80,000 to 90,000).12 ;  3 The severity of TBI can be categorized based on the Glasgow comma scale (GCS) at the time of injury as follows: mild (13-15), moderate (9-12) and severe (<9).4 TBI usually affect the brain function such as cognitive status, executive function, memory, data processing, language skills and attention.5 It has heterogeneous aspects and based on the injury location and type. It can have different presentations. Hence it is considered as a difficult one to treat.6

The brain plasticity could help it in rehabilitation phase to restore its normal function after any trauma or disease. But the amount of this ability is poorly understood. Some studies approved that neurofeedback therapy (NFT) can promote neuroplasticity.7 In the method of neurofeedback (NF), as a non-pharmacological intervention, the feedback to brain waves which are representative of subconscious neural activity can be observed by the client and then he/she will be able to control and change them.8 ;  9 There are some evidences that show NFT can be useful in some other diseases like Obsessive-compulsive disorder,10 attention-deficit/hyperactivity disorder11 and also refractory epilepsy.12 There are also some published studies about the effect of NFT on patients with TBI. Surmeli in 2007 investigated the effect of NFT on 24 patients with mild TBI and reported that NFT can result in significant improvement in test of variables of attention, beck depression inventory and minnesota multiphasic personality inventory.13 In a study in 2014, with evaluation of two patients with moderate head injury and without control group, it is reported that electroencephalogram biofeedback can lead to increase the cognitive scores and improve the concussion symptoms and finally concluded that NFT can be effective on the changes in the structural and functional connectivity among patients with moderate TBI.14

Although these published papers reported a positive effect of NFT on the TBI patients, we have not enough data about the standard treatment protocol with NF, and literature still needs more original studies like randomized controlled clinical trial to suggest NF as a treatment option among patients with TBI regarding the two following functions of cognitive status: short-term memory (STM) and continuous attention (CA).6

In this preliminary study, we tried to evaluate the effect of NFT on CA and STM of patients with moderate TBI using a randomized controlled clinical trial. […]

Continue —> Effects of neurofeedback on the short-term memory and continuous attention of patients with moderate traumatic brain injury: A preliminary randomized controlled clinical trial

, , , , , , ,

Leave a comment

[BLOG POST] Driving After Stroke: Is it Safe? -Saebo

After having a stroke, many survivors are eager to start driving again. Driving offers independence and the ability to go where you want to go on your own schedule, so it is no surprise that survivors want to get back behind the wheel rather than rely on someone else for their transportation needs.

Unfortunately, having a stroke can have lasting effects that make driving more difficult. A survivor might not be aware of all of the effects of their stroke and could misjudge their ability to drive safely. Driving against a doctor’s orders after a stroke is not only dangerous, it may even be illegal. Many stroke survivors successfully regain their ability to safely drive after a stroke, but it is important that they do not attempt to drive until they are cleared by their healthcare provider.

 

How Stroke Affects the Ability to Drive

Having a stroke can affect an individual’s ability to drive in numerous ways, whether it be because of physical challenges, cognitive changes, or other challenges.

 

Physical Challenges

Physical-Challenges

After a stroke, it’s common to experience weakness or paralysis on one side of the body, depending on which side of the brain the stroke occurred. More than half of all stroke survivors also experience post-stroke pain. Minor physical challenges may be overcome with adaptive driving equipment, but severe challenges like paralysis or contracture can seriously affect an individual’s ability to drive.

 

Cognitive Effects

cognitive

Driving requires a combination of cognitive skills, including memory, concentration, problem solving, judgement, multitasking, and the ability to make quick decisions. A stroke can cause cognitive changes that limit the ability to do many of those things.

 

Vision Problems

vision

As many as two-thirds of stroke victims experience vision impairments as a result of a stroke. This can include vision loss, blurred vision, and visual processing problems. Stroke survivors with vision problems should not drive until their problems are resolved and they have been cleared by a doctor.

 

Fatigue

fatigue

Fatigue is a common physical condition after a stroke that affects between 40 and 70 percent of stroke survivors. Fatigue can arrive without warning, so it is dangerous to drive when suffering from post-stroke fatigue.

 

Warning Signs of Unsafe Driving

 

Stroke survivors are not always aware of how their stroke has limited their ability to drive. If they are choosing to drive after their stroke against their doctor’s advice, it is important for them and their loved ones to look out for warning signs that they might not be ready to start driving. Here are some of the common warning signs to look out for:

  • Driving faster or slower than the posted speed or the wrong speed for the current driving conditions
  • Consistently asking for instruction and help from passengers
  • Ignoring posted signs or signals
  • Making slow or poor decisions
  • Becoming easily frustrated or confused
  • Getting lost in familiar areas
  • Being in an accident or having close calls
  • Drifting into other lanes

 

If you or your loved one is showing any of these warning signs, immediately stop yourself or them from driving until your or their driving is tested.

 

Driving Again After a Stroke

Before a stroke survivor begins driving again, they should speak with their doctor or therapist to discuss whether or not it would be safe for them to continue driving. Many states require mandatory reporting by a physician to the DMV if their patient has impairments that may affect their driving after a stroke. Even if their doctor clears them to drive, they still will likely need to be evaluated by the DMV before they regain their driving privileges.

 

Driver rehabilitation specialists are available to help stroke survivors evaluate their driving ability from behind the wheel. There are also driver’s training programs that provide a driving evaluation, classroom instruction, and suggestions for modifying a car to the individual driver’s needs. For instance, an occupational therapist can provide a comprehensive in-clinic evaluation of a client’s current skills and deficits relative to driving.

 

From there a client could be sent for an in-vehicle assessment for further evaluation by a certified driver rehabilitation specialist (CDRS). They can assess driving skills in a controlled and safe environment. An in-vehicle driving test is the most thorough way to gauge a driver’s abilities. Each assessment takes about 1 hour and involves driving with a trained evaluator or driving in a computer simulator.

 

The “behind-the-wheel” evaluation will include testing for changes in key performance areas such as attention, memory, vision, reaction time, and coordination. After this assessment the CDRS can determine if the client is safe to drive, can not drive at all, or may drive with additional recommendations.

 

Often times clients may require certain modifications to their car in order to drive safely. In addition, some clients may benefit from on-going classroom training and simulation training in order to meet safety standards. These are all services that a driver rehabilitation specialist can provide. To help find these resources, The Association for Driver Rehabilitation Specialists has a directory of certified driver rehabilitation specialists, driver rehabilitation specialists, and mobility equipment dealers and manufacturers.

 

Get Back Behind the Wheel

Many stroke survivors successfully drive after a stroke; however, not all are able to. While reclaiming independence is important, staying safe is the greatest concern. It is important for stroke survivors to listen to their doctors and wait until they are fully ready before attempting to drive again. With some hard work and patience, getting back behind the wheel is possible.

 


All content provided on this blog is for informational purposes only and is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call your doctor or 911 immediately. Reliance on any information provided by the Saebo website is solely at your own risk.

Source: Driving After Stroke: Is it Safe? | Saebo

, , , , ,

Leave a comment

[ARTICLE] The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials – Full Text

Abstract

Physically-active video games (‘exergames’) have recently gained popularity for leisure and entertainment purposes. Using exergames to combine physical activity and cognitively-demanding tasks may offer a novel strategy to improve cognitive functioning. Therefore, this systematic review and meta-analysis was performed to establish effects of exergames on overall cognition and specific cognitive domains in clinical and non-clinical populations. We identified 17 eligible RCTs with cognitive outcome data for 926 participants. Random-effects meta-analyses found exergames significantly improved global cognition (g = 0.436, 95% CI = 0.18–0.69, p = 0.001). Significant effects still existed when excluding waitlist-only controlled studies, and when comparing to physical activity interventions. Furthermore, benefits of exergames where observed for both healthy older adults and clinical populations with conditions associated with neurocognitive impairments (all p < 0.05). Domain-specific analyses found exergames improved executive functions, attentional processing and visuospatial skills. The findings present the first meta-analytic evidence for effects of exergames on cognition. Future research must establish which patient/treatment factors influence efficacy of exergames, and explore neurobiological mechanisms of action.

1. Introduction

Cognition can be broadly defined as the actions of the brain involved in understanding and functioning in our external environment (Hirschfeld and Gelman, 1994). As it is generally accepted that cognition requires multiple mental processes, this broader concept has been theoretically separated into multiple ‘cognitive domains’ (Hirschfeld and Gelman, 1994). Although definitions vary, and the boundaries between domains often overlap, examples of distinct areas of cognitive functioning include the processes for learning and remembering verbal and spatial information, attentional capacities, response speed, problem-solving and planning (Strauss et al., 2006).

Various neuropsychological tests have been developed as tools for assessing and quantifying an individual’s overall cognitive functioning (or ‘global cognition’) along with their performance within the separable domains of cognition (Strauss et al., 2006). Performance in these various cognitive tests has been found to be relatively stable over time in healthy adults, and moderately accurate predictors of real-world functioning and occupational performance (Chaytor and Schmitter-Edgecombe, 2003 ;  Hunter, 1986). Furthermore, neuropsychological tests can detect the deficits in cognitive functioning which arise as a consequence of various psychiatric and neurological diseases (Mathuranath et al., 2000 ;  Nuechterlein et al., 2004). For example, people with Parkinson’s disease show marked impairments in planning and memory tasks (Dubois and Pillon, 1996), whereas those with schizophrenia have cognitive pervasive deficits, 1–2 standard deviations below population norms, which also predict the severity of disability in this population (Green et al., 2000). Additionally, cognitive abilities decline naturally in almost all people during healthy ageing (Van Hooren et al., 2007). In an ageing population, the functional consequences of cognitive decline may ultimately have a severe social and economic impact. Thus, interventions which improve cognition hold promise for the treatment of psychiatric and neurological diseases, an have positive implications for population health.

Fortunately, interventions which stimulate the brain and/or body can improve cognition, or attenuate decline. For instance, physical exercise has been shown to significantly improve global cognition, along with working memory and attentional processes, in both clinical and healthy populations (Firth et al., 2016Smith et al., 2010 ;  Zheng et al., 2016). Interventions can also be designed to target cognition directly, as computerized training programs for memory and other functions have been found to provide significant cognitive benefits, at least in the short term (Hill et al., 2017 ;  Melby-Lervåg and Hulme, 2013). Furthermore, ‘gamification’ of cognitive training programs can maximize their clinical effectiveness, as more complex and interesting programs are capable of better engaging patients in cognitively-demanding tasks while also training multiple cognitive processes simultaneously (Anguera et al., 2013).

Previous studies have found that providing both aerobic exercise and cognitive training together may have additive effects, preventing ageing-related cognitive decline more effectively (Shatil, 2013). This may be due to aerobic and cognitive activity stimulating neurogenesis through independent but complementary pathways; as animal studies show that while exercise stimulates cell proliferation, learning tasks support the survival of these new cells (Kempermann et al., 2010), such that combining these two types of training results in 30% more new neurons than either task alone (Fabel et al., 2009).

Rather than delivering aerobic and cognitive training in separate training sessions, recent advances in technology has presented an opportunity for combining physical activity with cognitively-challenging tasks in a single session through ‘exergames’. Exergames are considered as interactive video-games which require the player to produce physical body movements in order to complete set tasks or actions, in response to visual cues (Oh and Yang, 2010). Common examples include the ‘Nintendo Wii’ (along with ‘Wii Fit’ or ‘Wii Sports software’) or the ‘Microsoft Xbox Kinect’. Additionally, virtual reality systems which use exercise bikes and/or treadmills as a medium for players to interact with three-dimensional worlds have also been developed to provide immersive training experiences (Sinclair et al., 2007).

Along with their popular usage for leisure and entertainment, there is growing interest in the application of exergame systems to improve clinical outcomes. Recent systematic reviews and meta-analyses of this growing literature have provided preliminary evidence that exergames can improve various health-related outcomes, including reducing childhood obesity, improving balance and falls risk factors in elderly adults, facilitating functional rehabilitation in people with parkinson’s disease, and even reduce depression (Barry et al., 2014Li et al., 2016 ;  van’t Riet et al., 2014). However, the effects of exergames on cognitive functioning have not been systematically reviewed, despite many individual studies in this area.

Therefore, the aim of this study was to systematically review all existing trials of exergames for cognition, and apply meta-analytic techniques to establish the effects of exergames on global cognition along with individual cognitive domains. We also sought to (i) examine the effects of exergames on cognition in healthy and clinically-impaired populations, and (ii) investigate if the effects of exergames differed from those of aerobic exercise alone, by comparing exergames to traditional physical activity control conditions.

Fig. 1

Fig. 1. PRISMA flow diagram of systematic search and study selection.

Continue —> The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials

, , , , , , , ,

Leave a comment

[WEB SITE] TherapWii – game suggestions

Why TherapWii

Gaming activates and is fun to do! In a playful and often unnoticed way skills are trained. Adolescents grow up in a digital world; they enjoy gaming and do it frequently. For adults and elderly gaming has been shown to be a useful type of therapy.

In a virtual environment moving, executing, learning and enjoying are appealing; if circumstances or limitations keep you from going to the bowling alley or playing an instrument, gaming can broaden your boundaries.

Gaming with the Wii can complement therapy, can make therapy more attractive, intenser and more provocative.

TherapWii has been developed to support therapists in an effective and specific way while using the Nintendo Wii and offer options to game in the home environment.

TherapWii is the product of an exploratory research project done by the Special Lectorship Rehabilitation at the Hague University. The results of this project can be found by clicking on the header ‘research’ at the end of the page.

How does TherapWii work?

Per therapy goal there are three colored tabs to help find the most suitable games. Each game lists specific information in text and symbols. There is also a level of difficulty; by moving the cursor over this button you see more information.

User information is saved in ‘explanation and tips’. To enhance this section you can email recommendations and suggestions to the email address listed below.

TherapWii has been developed, also for home use, so that experience lead to personal growth.

Advice for game adjustments

It is important that the therapist stays close to the patient’s goals and abilities and adjusts the game program appropriately. If you, as therapist, want to make the game easier, more difficult or more daring, you can change the instruction, implementation or setting.

A few examples:

Physical: strength (add weights to the arms or legs or change the starting position); balance/stability (play while standing on an instable foundation (ball, mat). Or play the games while sitting on a stationary bicycle!

Cognition: create double tasks (ask mathematics, questions or riddles); spatial orientation or visual adjustments (play with one eye covered or in front of a mirror).

Social-emotional: stimulate cooperation or competition (create bets or role-playing).

Let us know if you have other ideas to make the games more provoking.

How are the games rated?

The games were tested by several professionals (physical therapists, occupational therapists and sport therapists). Differences in opinion or scores were discussed and voted on.

Give us feedback, corrections and advice, we will adjust the TherapWii program monthly and will use your suggestions.

Which ability do you choose?

Social-Emotional

Physical

Cognitive

Visit WEB SITE

, , , , , , ,

Leave a comment

[Abstract+References] A Serious Games Platform for Cognitive Rehabilitation with Preliminary Evaluation

Abstract

In recent years Serious Games have evolved substantially, solving problems in diverse areas. In particular, in Cognitive Rehabilitation, Serious Games assume a relevant role. Traditional cognitive therapies are often considered repetitive and discouraging for patients and Serious Games can be used to create more dynamic rehabilitation processes, holding patients’ attention throughout the process and motivating them during their road to recovery. This paper reviews Serious Games and user interfaces in rehabilitation area and details a Serious Games platform for Cognitive Rehabilitation that includes a set of features such as: natural and multimodal user interfaces and social features (competition, collaboration, and handicapping) which can contribute to augment the motivation of patients during the rehabilitation process. The web platform was tested with healthy subjects. Results of this preliminary evaluation show the motivation and the interest of the participants by playing the games.

Source: A Serious Games Platform for Cognitive Rehabilitation with Preliminary Evaluation | SpringerLink

, , , , ,

Leave a comment

 [BLOG POST] What’s the Difference Between Cognitive Rehabilitation Therapy and Cognitive Behavioral Therapy?

Neuro trauma can completely disrupt the way a person feels, thinks and behaves.  Whether it’s from a mild concussion, severe traumatic brain injury, stroke or aneurysm – neuro trauma causes a wide variety of deficits including long and short term memory loss, impulsivity, mood swings and many other social, cognitive and behavioral issues.  Two of the most commonly recommended treatments also happen to be the most commonly mistaken for each other: Cognitive Behavioral Therapy (CBT) and Cognitive Rehabilitation Therapy (CRT). So, what’s the difference?

Cognitive Behavioral Therapy
Cognitive Behavioral Therapy is effective for treating a variety of conditions such as mood, anxiety, personality, eating, addiction, dependence and psychotic disorders.  Cognitive Behavioral Therapy replaces distorted or negative thoughts with more realistic ones to decrease emotional distress and self-defeating behavior. Simply put: if you change the way you think, you can change the way you feel and behave.

Drug addiction is commonly treated with Cognitive Behavioral Therapy. The therapist helps enable the patient to see how their thoughts, feelings and behavior patterns interact to trigger their urge to use drugs.  From here, the therapist can determine the source of the patient’s problematic relationship with drugs. For example, feelings of depression may lead to self-destructive thoughts which, in turn, may result in the patient using drugs.  The therapist targets negative feelings that start the cycle of abuse by helping the patient develop a positive self-worth. By altering thoughts like negative self-talk and self-isolation that can lead to drug-seeking behavior, Cognitive Behavioral Therapy helps end the negative feedback loop of addiction in a patient’s life. Even when therapy is complete, patients are advised to continue practicing CBT so they can maintain a positive outcome.

Cognitive Rehabilitation Therapy
Cognitive Rehabilitation Therapy is the process of mentally redeveloping the cognitive skills and function lost due to brain injury. These skills include intellectual performance, problem solving, attention deficits, memory and language difficulties. The key measure of CRT is the patient’s level of cognitive function. If the patient cannot relearn the lost skills, then the therapists teaches compensatory strategies. These strategies can literally be anything that helps the patient redevelop and maintain their independence. For example, a patient with short term memory problems could learn to set an alarm on his phone to remind him to take his medication.

Basic Cognitive Rehabilitation Therapy (CRT) included four components:
1) Assessment, education and awareness development of cognitive strengths and weaknesses, 2) skill development concentrating on resolving defined cognitive deficits, 3) compensatory strategy training and 4) functional activities that involve applying the first three components of CRT to everyday life.

At Life Skills Village, our therapists assess and treat patients’ cognitive skills by focusing BOTH on building upon the patient’s strengths while strategically shoring up their weaknesses.  But what if a patient has a deficit that cannot be rebuilt? This is where the therapist’s list of compensatory strategies comes in – for every deficit, there is at least one compensatory strategy.  A patient experiencing difficulties with short-term memory will have several strategies for them to try: there are many smart phone apps to help organize schedules and act as a reminder for events. Patients can develop the habit of taking notes in doctor’s appointments.  They might keep a calendar on their refrigerator at home to know where they are scheduled to be on any particular day. Even maintaining a simple “thought” journal can aid patients in tracking their emotions in relation to daily events.

Although both Cognitive Behavioral Therapy and Cognitive Rehabilitation Therapy maintain a focus on cognition, they are distinct therapies designed to address specific cognitive concerns. Cognitive Behavioral Therapy is used to treat mental conditions such as anxiety or depression by focusing on an emotional or behavioral issue. The goal is to change a patient’s perception in order to decrease self-defeating behaviors, improve their mood and develop healthy thought patters. Cognitive Rehabilitation Therapy employs a broad range of cognition-based therapies to assist patients with cognitive deficits, such as memory, attention and executive function. The goal is to improve cognitive function and processes. Using these and a myriad of other therapies, Life Skills Village facilitates independence and a return to normal life for our clients after their injuries.

Source: Life Skills Village Blog – LifeSkillsVillage.com

, , , ,

Leave a comment

[WEB SITE] This could explain why people with OCD can’t overcome their urges – ScienceAlert

People with obsessive-compulsive disorder (OCD) struggle to overcome their repetitious urges due to an inability to learn what kinds of stimuli are actually safe, new research suggests.

OCD is a disorder where people feel compelled to repeatedly perform certain tasks or think particular thoughts. These insistent routines are called ‘rituals’, and scientists think the behaviours persist because those with OCD struggle to learn when situations aren’t threatening.

“Our study suggests that something is going wrong in the brains of people with OCD when they are learning what is safe, and this in turn affects how they perceive threats under updated circumstances,” says neuroscientist Annemieke Apergis-Schoute from the University of Cambridge in the UK.

Apergis-Schoute and her team conducted a learning experiment where they compared the brain activity and anxiety responses of OCD patients with measurements taken from people without the condition.

OCD is estimated to affect around 1 percent of the adult population in the US, with the disorder compelling people to do things like repeatedly wash their hands, or check that doors are locked and appliances are switched off.

“They’re not usually off-the-wall bizarre,” one of the team, Naomi Fineberg from the Hertfordshire Partnership University NHS Foundation Trust in the UK told New Scientist.

“The obsessions are the sorts of things that most people would understand as being rational but exaggerated – for example, the need to wash your hands after going to the toilet.”

While these rituals aren’t necessarily harmful in themselves, they stem from intrusive and unwanted feelings that are usually associated with anxiety, and can have a considerable impact on carrying out day-to-day activities.

One of the ways of treating OCD is called exposure therapy, where people with the condition are made to confront the source of their anxiety – such as touching a dirty object – in an attempt to control their response.

But exposure therapy doesn’t work for every patient, and even in people who do learn to control their anxiety response, the effectiveness can be limited.

To find out why exposure therapy might only have limited success in treating OCD, the researchers recruited 78 people for a learning experiment – 43 of the volunteers had OCD, and 35 acted as a control group.

Each of the participants were asked to lie in a functional magnetic resonance imaging (fMRI) scanner, which measured their brain activity while they were shown one of two faces – a red face or a green face.

In the first experiment, the participants would receive a mild electric shock when shown the green face, but wouldn’t be shocked when viewing the red.

Sensors that measured tiny amounts of sweat produced by the participants showed that the group learned to associate anxiety with the green face (as a result of the electric shocks that came with it), but not with the red face.

But then the researchers swapped the green and red faces around, so that it was the red face that now came with an electric shock.

While the control group successfully learned the new associations – green is now safe, red is bad – the participants with OCD were less able to register that the green face no longer posed a threat.

Measurements of the participants’ brain activity when they were shown the now safe green face indicated that the OCD patients had less activity in the ventromedial prefrontal cortex – which is associated with processing safety signals in the brain, and decision making in relation to perceived risks.

According to the researchers, this could explain why people with OCD have difficulty overcoming their rituals, because their brains may find it significantly harder to unlearn negative associations, even when treatment such as exposure therapy attempts to directly counter them.

“This needs to be taken into consideration when we’re developing future therapies to tackle the disorder,” Apergis-Schoute explains in a press release.

“Current exposure therapies may help the patient take control over their compulsions, but our work suggests that they might never learn that their compulsions are unnecessary and they may return in times of stress.”

It’s worth pointing out that the researchers are drawing their conclusions from a very small sample of participants, so larger studies involving more patients affected by OCD will be needed to confirm the findings.

But if the results can be replicated, it could help explain some of the limitations of exposure therapy, and improve the delivery of the treatment in the future.

“The bit of their brain that should be telling them it’s safe isn’t working,” Fineberg explained to Clare Wilson at New Scientist.

“Now we can say to them this is why [exposure therapy is] taking so long and we should stick with it.”

The findings are reported in PNAS.

Source: This could explain why people with OCD can’t overcome their urges – ScienceAlert

, , ,

Leave a comment

[WEB SITE] Lost & Found: Caps, Sunglasses, and Earplugs – Strategies for Coping with Sensory Hypersensitivity – brainline.org

If it seems like your sense of touch, taste, smell, hearing, or vision is extra sensitive or heightened after your brain injury, it’s not your imagination. Sensory hypersensitivities are another major, yet not as obvious, contributor to fatigue and overload after brain injury. What we experience with our senses is essentially more information for our injured brains to try to process and organize. You can have difficulties processing sensory information just like any other information in your brain. Some examples of sensory hypersensitivities are:

  • Sounds that you barely noticed before are alarming and startle you.
  • It feels like you have megaphones in your ears.
  • Background sounds and stimulating environments become overwhelming.
  • Fluorescent and bright lights give you headaches.
  • Clothing that was comfortable before feels irritating now.
  • Large gatherings of people feel overwhelming.

Pain and fatigue can intensify sensory hypersensitivities, putting you in a hyper-sensitive or hyper-vigilant state. When you are in a hyper-sensitive or hyper-vigilant state, even subtle stimulants feel overwhelming. Especially sights and sounds that didn’t bother you before, may now trigger anxiety and the fight-or-flight response where your whole being feels threatened and out of control. You may shut down and not be able to do any more or you may feel compelled to escape from the situation. It can be very taxing, physically and mentally.

Stress management, movement and using all of your senses can help your brain organize and integrate the senses. This is similar to what children do. Consider how physically active children are as they grow and develop!

See Brain Recharging Breaks at the end of this chapter for some basic meditation techniques. Meanwhile, following are suggestions for coping with sensory hypersensitivities.

General Coping Suggestions

Limit exposure to avoid sensory overload.

  • Avoid crowds and chaotic places where there are a lot of stimuli, like shopping malls.
  • Do shopping and errands early in the week and early in the day, when stores are less crowded and quieter.
  • Shop in smaller, quieter stores when possible.
  • Eat out in restaurants when they are quieter, in between regular meal times.
  • Hold conversations in a quiet place.
  • Ask people to please speak one at a time. Explain that you’d really like to hear what everyone has to say but you can only hear one person at a time.
  • Sleep during car trips.
  • If you want to attend a function that you expect will be taxing, plan to stay only a short while. Take your cap, sunglasses and earplugs. Sit towards the back to minimize the sound and where you can easily exit to a quieter place or the car.

Monitor your pain, stress and fatigue levels.

Lights and sounds will bother you the most when you are stressed or fatigued. If you are feeling especially sensitive, use it as a cue that you need to take a break and use some relaxation techniques.

Try avoiding nicotine, caffeine and alcohol.

They may make the symptoms worse. If you have vertigo, try limiting your salt intake, which can cause fluid retention. Consider strengthening exercises for your neck with the guidance of a physical therapist.

When you are starting to feel stressed or anxious, try incorporating another sense.

  • Put something in your mouth to chew or suck on. Strong flavors like peppermint or cinnamon are especially effective.
  • Put on some soothing music.
  • Apply some deep pressure. Give yourself a hug or press your palms firmly together or on the table. Squeeze the steering wheel if you are driving the car.

Experiment with activities and alternative therapies that involve your senses.

Listen to music, experiment with movement, dance, yoga, water, art, aromatherapy, etc.

Challenge your sensitivities.

Gradually increase your exposure and tolerance when using earplugs, sunglasses, etc.
Don’t eliminate the senses completely or you set yourself up for super-sensitivity.

Specific Coping Strategies

Sensitivities to sound

  • Limit your exposure to noisy stores and loud situations like sporting events, the movie theatre and children’s school activities. Don’t participate or plan to stay for a limited amount of time. Sit on the outskirts so you can gracefully escape to a quieter place if needed.
  • Use earplugs, try different kinds, and carry them with you.
  • Use headphones for TV and music:
    • For others, when you don’t want to hear it.
    • For yourself, when you want to hear it better.
  • Minimize distractions from snacking while doing things like working in groups or playing games. Use bowls for food instead of eating directly from noisy bags.
  • Add some background sound – a fan, white noise machine, soothing music.
  • Remove yourself from the situation and go to a quieter place as soon as possible, even the bathroom, when you feel overwhelmed or anxious. Then try:
    • Closing your eyes
    • Taking slow deep stomach breaths
    • Putting an ice pack on your forehead and eyes
  • Gradually expose yourself to different sounds and louder sounds to increase your tolerances.

Sensitivities to light

  • Avoid bright light and fluorescent lights.
  • Use sunglasses or a cap with a brim, even indoors.
  • Try yellow tinted glasses if florescent lights are a problem.
  • Try polarized sunglasses if driving glare is a problem.
  • Try yellow tinted glasses if night driving is a problem.
  • Make sure you are getting plenty of vitamin A (but not too much!).
  • Eat orange colored fruits and vegetables like carrots, sweet potatoes, squash, and cantaloupe.
  • Take a moment to just close your eyes for a few minutes when you are starting to feel stressed or anxious. This blocks out the visual stimuli.

Sensitivities to touch, taste, and smell

  • Experiment! Cultivate an awareness of how things feel, taste and smell.
  • Rub different textures on your arms, increasing the intensity to gradually decrease sensitivities.
  • Add texture, contrasting temperatures and flavors to your food, like ice cream with crunchy nuts or chips with spicy taco sauce.
  • Notice the textures.
  • Pay attention to smells.
  • How do different aromas make you feel?

If your sense of smell is altered, make sure to have functioning smoke and gas detectors in your home.

Doing cognitive work

  • Plan to do cognitive work when your environment is quiet. Eliminate as many distractions and interruptions as possible.
  • Screen out distractions by using earplugs or headphones, playing soothing music, or using a fan or white noise machine if you have sensitivities to sound.
  • Turn down the volume on the phone and let the machine get it.
  • Work in an uncluttered space or use a three sided table screen, to help screen out visual distractions.
  • Give children headphones for the TV if you are having trouble screening it out.
  • Do your “thinking” work while children are in school or asleep.
  • Still having trouble concentrating? Try bringing in another sense.
    • Put on some soothing nature or instrumental music, something without words at a low volume.
    • Try chewing or sucking on something while you are working. Coffee stirrers can substitute for fingernails. Strong flavored or fizzy candies and gum can aid alertness.
    • Try using some deep pressure by giving yourself a hug, pressing your palms strongly against each other or on the table.
    • Try sitting on a large therapy ball while you work. A great strategy if you have trouble sitting still!
  • Take a physical break, every 15 min. at first. Resist the urge to push through. I know it feels counter-intuitive but taking breaks will actually help you work longer! Gradually you will find you can increase the time between breaks.
    • Use a timer – without a ticking sound!
    • Pause and stretch, drink some water or make a cup of tea, walk around the house or the yard, rock in a chair, walk the dog, pat the cat.

Visual Processing Problems

Vision is an extremely important and complex source of sensory information. What you see with your eyes travels through your brain to the back area of your brain, where it is processed in the occipital lobe. There is a lot of territory between the eyes and the back of the brain where an injury can occur. The occipital lobe may be damaged directly from impact to the back of the head or it may be damaged indirectly from the ricochet of the brain inside the skull when the front of the brain is impacted. Damage to the occipital lobe frequently occurs in car accidents, falls and sports injuries. Even subtle visual problems following a brain injury can have a significant impact on cognition and functioning.

I wish I had known about visual problems and visual therapy when I had my car accident. I thought I was really going crazy! Fortunately for me, my issues improved with time but not without mishaps, like falling off a curb!

Some common problems after a brain injury related to vision include:

  • Double vision
  • Trouble tracking words on a page
  • Impaired depth perception
  • Hypersensitivities to light
  • Difficulties remembering and recalling information that is seen
  • Difficulties “filling in the gaps” or completing a picture based on seeing only some of the parts
  • Trouble seeing objects to the side
  • Low tolerances to changing light or clutter
  • Impaired balance, bumping into objects
  • Feeling overwhelmed when there is a lot of visual stimuli

If you notice problems in areas related to visual processing, please consult a visual therapist or a neuroopthalmologist, they can help!

Tips:

  • Don’t eliminate any sense completely or you set yourself up for a super-sensitivity.
  • Gradually expose yourself to more light, sound, touch, smell, and taste.
  • Be patient, in many cases your sensory hypersensitivities will decrease in time!
  • Ask for physical therapy or occupational therapy with a therapist with a background in sensory integration for help with sensory sensitivities.

Some good news about sensory hypersensitivity is that it is also associated with a heightened sense of awareness and intuition. You may find that you feel more aware of your intuition and more creative since your brain injury. This is not uncommon. Enjoy!

Brain Recharging Breaks

If I had to choose one strategy that helped me the most after my brain injury, it would be learning to meditate. Meditation is especially helpful when you are experiencing sensory overload. It can help you calm yourself down from that hyper-sensitive state. It was also the only way I have found to give my brain a rest, to put it temporarily in a “cast”, like you would a broken limb. Often, after meditating for 15-20 minutes, the “logjam” in my brain clears up and I am somehow able to think again!

I recommend using some stress management or meditation techniques at least once a day. Plan it, schedule it in your planner, make it part of your daily routine. Meditation is not as mysterious as you might think. Try these basic steps:

  • Get in a comfortable position on the bed, in a recliner or even in the car; uncross your arms and legs. Cover yourself with a blanket if you are cool.
  • Close your eyes and do some slow deep breathing.
  • Slowly inhale, expanding your stomach and counting to 7.
  • Exhale gradually, contracting your stomach towards your spine, counting to 7.

Repeat. Repeat. Repeat.

When you are feeling more relaxed, as you continue your slow deep breathing, experiment with the following suggestions to increase the effectiveness of the experience.

Do a body scan checking for areas of pain or stress.

  • Eyes closed, inhale deeply, picture your forehead and notice any stress or pain.
  • Exhale and imagine the pain floating away with your exhale.
  • Inhale, picture your eyebrows and notice any stress or pain. Exhale and release it, imagining the stress floating away.
  • Repeat for your eyes, ears, jaw, throat, back of neck, shoulders … down to your toes. Breathe in relaxation, breathe out stress and pain.

Notice how you feel after you get to your toes!

  • Visualize or imagine yourself in a warm, secure, relaxing, happy, peaceful place; floating on a cloud, floating in the water, or recalling a happy memory.
    • Continue slow deep breathing.
  • Focus on a picture or artwork that you like, noticing each detail.
    • Continue slow deep breathing.
  • Listen to music, any music that is soothing to you. Nature sounds or instrumental music is a good place to start experimenting.
    • Continue slow deep breathing.
  • Use aromatherapy – any scent that smells good to you. Favorite scents are often from childhood memories!
    • Continue slow deep breathing.

Strive to let go of that never-ending tape of worries and “shoulds” that plays in your head. Focus on your senses – your breath, the music, a relaxing place, a comforting aroma. If thoughts drift in, gently push them away. It gets easier with practice, you’ll find what works best for you and you’ll be amazed at how much it helps you!

Excerpted from Lost & Found: A Survivor’s Guide for Reconstructing Life After a Brain Injury by Barbara J. Webster. © 20ll by Lash & Associates Publishing/Training Inc. Used with permission. Click here for more information about the book.

Related Content

Source: Lost & Found: Caps, Sunglasses, and Earplugs

, , , , , , , ,

Leave a comment

[WEB SITE] 7 signs of executive dysfunction after brain injury

 ‘Executive dysfunction‘ is not, perhaps, a particularly well known term, but the effects of brain injury that it covers are very common indeed. It is used to collectively describe impairment in the ‘executive functions’ – the key cognitive, emotional and behavioural skills that are used to navigate through life, especially when undertaking activities and interacting with others.

Although executive dysfunction is a common problem among many brain injury survivors, it is most commonly experienced following an injury to the frontal lobe.

The importance of executive functions is shown by the difficulties caused when they don’t work properly and someone has problems with executive dysfunction. Since the executive functions are involved in even the most routine activities, frontal injuries leading to executive dysfunction can lead to problems in many aspects of life.

Here we list the most common effects of executive dysfunction, with some examples of common issues that brain injury survivors can face:

Difficulties with motivation and organisation

  • Loss of ‘get up and go’, which can be mistaken for laziness
  • Problems with thinking ahead and carrying out the sequence of steps needed to complete a task

Rigid thinking

  • Difficulty in evaluating the result of actions and reduced ability to change behaviour or switch between tasks if needed

Poor problem solving

  • Finding it hard to anticipate consequences
  • Decreased ability to make accurate judgements or find solutions if things are going wrong

Impulsivity

  • Acting too quickly and impulsively without fully thinking through the consequences, for example, spending more money than can be afforded

Mood disturbances

  • Difficulty in controlling emotions which may lead to outbursts of emotion such as anger or crying
  • Rapid mood changes may occur, for example, switching from happiness to sadness for no apparent reason

Difficulties in social situations

  • Reduced ability to engage in social interactions
  • Finding it hard to initiate, participate in, or pay attention to conversations
  • Poor judgement in social situations, which may lead to saying or doing inappropriate things

Memory/attention problems

  • Finding it harder to concentrate
  • Difficulty with learning new information
  • Decreased memory for past or current events, which may lead to disorientation

Find out more

If you or someone you care for is affected by executive dysfunction, it is important to seek support. Speak to your doctor about your symptoms, and ask about referral to specialist services such as counselling, neuropsychology and rehabilitation.

You can find out more and get tips and strategies to help manage your condition on our executive dysfunction after brain injury page.

Headway groups and branches can offer support in your area, and you can contact our helpline if you would like to talk things through.

Source: 7 signs of executive dysfunction after brain injury | Headway

, , , , , , , , , ,

Leave a comment

%d bloggers like this: