Archive for category Constraint induced movement therapy CIMT

[ARTICLE] Neurobiology of Recovery of Motor Function after Stroke: The Central Nervous System Biomarker Effects of Constraint-Induced Movement Therapy – Full Text

Abstract

Recovery of motor function after stroke involves many biomarkers. This review attempts to identify the biomarker effects responsible for recovery of motor function following the use of Constraint-Induced Movement Therapy (CIMT) and discuss their implications for research and practice. From the studies reviewed, the biomarker effects identified include improved perfusion of motor areas and brain glucose metabolism; increased expression of proteins, namely, Brain-Derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor (VEGF), and Growth-Associated Protein 43 (GAP-43); and decreased level of Gamma-Aminobutyric Acid (GABA). Others include increased cortical activation, increased motor map size, and decreased interhemispheric inhibition of the ipsilesional hemisphere by the contralesional hemisphere. Interestingly, the biomarker effects correlated well with improved motor function. However, some of the biomarker effects have not yet been investigated in humans, and they require that CIMT starts early on poststroke. In addition, one study seems to suggest the combined use of CIMT with other rehabilitation techniques such as Transcortical Direct Stimulation (tDCs) in patients with chronic stroke to achieve the biomarker effects. Unfortunately, there are few studies in humans that implemented CIMT during early poststroke. Thus, it is important that more studies in humans are carried out to determine the biomarker effects of CIMT especially early on poststroke, when there is a greater opportunity for recovery. Furthermore, it should be noted that these effects are mainly in ischaemic stroke.

1. Introduction

Stroke is a leading cause of long-term disability. It is a neurological deficit due to impaired blood supply to the brain areas caused by ischaemia or haemorrhage or occasionally both [12]. Impaired blood supply to the brain results in a cascade of pathological processes that disrupt neurophysiological mechanisms and expression of Central Nervous System (CNS) biomarkers that eventually cause neuronal cell injury or death. When neuronal cells are injured, they discharge cytotoxic molecules that further injure or damage other apparently healthy neuronal cells [24]. This in turn creates a vicious cycle of cell injury and/or death that cause impairments in brain functions such as motor, sensory, and cognitive functions. Therefore, preventing or reducing the disruption of neurophysiological mechanisms and expression of CNS biomarkers by these pathological processes should be the target of treatment and rehabilitation following stroke. This may help prevent neuronal cell damage, improve neuronal cell homeostasis, and restore functions of the CNS.

One of the most promising rehabilitation techniques used for recovery of motor function after stroke is Constraint-Induced Movement Therapy (CIMT). The CIMT is a technique that comprises of massed task practice with the affected limb, constraint of the unaffected limb, and transfer package [57]. It has been reported to improve the use of limbs in daily activities and improve the quality, quantity, and precision of movement [89]. However, these findings relate to the system or functional level of the nervous system. According to Cohen, to effectively understand the functions of the nervous system, it needs to be studied at the molecular and functional levels, and possibly also at other sublevels between them [10]. Consequently, current evidence has shown that repetitive functional activity or modulation of afferent inputs can induce growth, modification, degradation, and death of neuronal cells which can help the CNS to recover from injury [1112].

In practice, however, understanding the precise biomarkers of the process of recovery after stroke may be difficult due to differences in patients’ presentations and the recovery processes [13]. The aim of this article is to review some of the CNS biomarkers CIMT targets after stroke and their correlations with motor function outcomes in both humans and animals (since animal studies serve as basic foundations for studies in humans). This will help us further understand the biomarkers of motor recovery following stroke, and possibly help researchers and clinicians identify the type of patients CIMT is more suitable for. A biomarker can be a gene, a naturally occurring molecule, or a particular characteristic by which a physiological or pathological process or disease can be identified [14]. It includes imaging biomarkers that are identified using computed tomography, positron emission tomography, transmagnetic stimulation, and magnetic resonance imaging; and molecular biomarkers such as a particular protein or gene expression [1517]. The search engine PubMed was used using the search term Constraint-Induced Movement Therapy. The biomarkers extracted from the CIMT studies obtained from PubMed were further searched on Google Scholar in order to obtain more information. The characteristics of some of the reviewed studies in humans are presented in Table 1.[…]

Continue —-> https://www.hindawi.com/journals/np/2020/9484298/?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound

, , , , ,

Leave a comment

[Abstract + Similar articles] Recovering Functional Independence After a Stroke Through Modified Constraint-Induced Therapy

Abstract

Background: Population ageing and changes in the epidemiological profile of neurological pathologies has resulted in an increase in patients with disabilities. Rehabilitation strategies such as Modified Constraint-Induced Movement Therapy (CIMTm) play a key role in treating patients with neurologic deficiencies and motor impairments. This intervention is intended to mitigate disability, promote maximum functional independence, and optimize social and economic participation of patients with upper extremity weakness. Our goal was to assess the recovery of functional independence in patients after a stroke using to CIMTm.

Patients and method: Thirty-six subjects who had suffered stroke took part in a randomised clinical trial. The treatment was applied through either collective or individual modalities for three hours per day for a period of ten days. Participant’s functional independence was assessed using the Functional Independence Measure (FIM) scale at the before and after of the intervention.

Results: An analysis of covariance carried out on the pre-test assessments indicates that the dependent variable presents significant differences (F1.31 = 42.78, p < 0.001, η2p = 0.72) in favour of the collective intervention modality.

Conclusion: Both modalities of CIMTm intervention promote functional independence. However, the greatest improvements were observed in participants in the collective modality. Improvements in functional independence pursue a reduction in learned non-use behaviours through greater use of the paretic upper extremity in everyday activities.

Similar articles

via Recovering Functional Independence After a Stroke Through Modified Constraint-Induced Therapy – PubMed

, , , , , , , , , ,

Leave a comment

[Case Study] Constraint-Induced Movement Therapy for Improving Motor Function of the Paretic Lower Extremity After Stroke – Abstract

Abstract

A 56-yr-old woman with chronic stroke and gait dysfunction was recruited for this study. A lower-extremity constraint-induced movement therapy protocol was given consisting of 3.5 hrs/d of supervised intervention activities on 10 consecutive weekdays. Motor training was intensive and involved shaping. In addition, a group of behavior management strategies was used to induce further unsupervised practice and transference of motor skills from the laboratory to real-world situations. Changes in functional mobility, walking speed, balance, level of assistance, perceived quality of movement, and level of confidence while performing daily activities were assessed five times in both the baseline and intervention phases. The outcomes observed after the intervention were determined by calculating the difference between the average scores obtained in both phases. Changes in perceived quality of movement, level of confidence, level of assistance, and balance were observed.

https://journals.lww.com/ajpmr/Abstract/2020/06000/Constraint_Induced_Movement_Therapy_for_Improving.24.aspx

, , , , , , ,

Leave a comment

[Abstract] Exploration of barriers and enablers for evidence-based interventions for upper limb rehabilitation following a stroke: Use of Constraint Induced Movement Therapy and Robot Assisted Therapy in NHS Scotland

The routine use of evidence-based upper limb rehabilitation interventions after stroke has the potential to improve function and increase independence. Two such interventions are Constraint Induced Movement Therapy and Robot Assisted Therapy. Despite evidence to support both interventions, their use within the National Health Service appears, anecdotally, to be low. We sought to understand user perceptions in order to explain low uptake in clinical practice.

A combination of a cross-sectional online survey with therapists and semi-structured interviews with stroke patients was used to explore uptake and user opinions on the benefits, enablers and barriers to each intervention.

The therapists surveyed reported low use of Constraint Induced Movement Therapy and Robot Assisted Therapy in clinical practice within the Scottish National Health Service. Barriers identified by therapists were inadequate staffing, and a lack of training and resources. Interviews with stroke patients identified themes that may help us to understand the acceptability of each intervention, such as the impact of motivation.

Barriers to the uptake of Constraint Induced Movement Therapy and Robot Assisted Therapy within the clinical setting were found to be similar. Further qualitative research should be completed in order to help us understand the role patient motivation plays in uptake.

via Exploration of barriers and enablers for evidence-based interventions for upper limb rehabilitation following a stroke: Use of Constraint Induced Movement Therapy and Robot Assisted Therapy in NHS Scotland – Gillian Sweeney, Mark Barber, Andrew Kerr,

, , , , , , , , , , ,

Leave a comment

[Abstract] Predicting Improved Daily Use of the More Affected Arm Poststroke Following Constraint-Induced Movement Therapy

Abstract

Background

Constraint-induced movement therapy (CI therapy) produces, on average, large and clinically meaningful improvements in the daily use of a more affected upper extremity in individuals with hemiparesis. However, individual responses vary widely.

Objective

The study objective was to investigate the extent to which individual characteristics before treatment predict improved use of the more affected arm following CI therapy.

Design

This study was a retrospective analysis of 47 people who had chronic (> 6 months) mild to moderate upper extremity hemiparesis and were consecutively enrolled in 2 CI therapy randomized controlled trials.

Methods

An enhanced probabilistic neural network model predicted whether individuals showed a low, medium, or high response to CI therapy, as measured with the Motor Activity Log, on the basis of the following baseline assessments: Wolf Motor Function Test, Semmes-Weinstein Monofilament Test of touch threshold, Motor Activity Log, and Montreal Cognitive Assessment. Then, a neural dynamic classification algorithm was applied to improve prognostic accuracy using the most accurate combination obtained in the previous step.

Results

Motor ability and tactile sense predicted improvement in arm use for daily activities following intensive upper extremity rehabilitation with an accuracy of nearly 100%. Complex patterns of interaction among these predictors were observed.

Limitations

The fact that this study was a retrospective analysis with a moderate sample size was a limitation.

Conclusions

Advanced machine learning/classification algorithms produce more accurate personalized predictions of rehabilitation outcomes than commonly used general linear models.

 

via Predicting Improved Daily Use of the More Affected Arm Poststroke Following Constraint-Induced Movement Therapy | Physical Therapy | Oxford Academic

, , , , , , , ,

Leave a comment

[ARTICLE] Stroke patients’ and non-professional coaches’ experiences with home-based constraint-induced movement therapy: a qualitative study – Full Text

To investigate the experiences of chronic stroke patients and non-professional coaches with home-based constraint-induced movement therapy (homeCIMT).

Qualitative study embedded within a cluster randomized controlled trial investigating the efficacy of homeCIMT to improve the use of the affected arm in daily activities.

Patients’ home environment.

13 stroke patients and 9 non-professional coaches’ alias family members who had completed the four-week homeCIMT programme in the context of the HOMECIMT trial.

Semi-structured interviews; qualitative data were analysed using the methodology of the hermeneutic phenomenological data analysis.

We identified six themes in the qualitative analysis describing the experiences of patients and non-professional coaches with homeCIMT: (1) homeCIMT can be integrated into everyday life with varying degrees of success; (2) training together may produce positive experiences as well as strain; (3) self-perceived improvements during and following homeCIMT; (4) using the affected arm in everyday life is challenging; (5) subjective evaluation of and experiences with homeCIMT-specific exercises; and (6) impact of professional therapists’ guidance and motivation during homeCIMT. Statements regarding theme five and six were only provided by patients, whereas the other themes contain both, the experiences of stroke patients and non-professional coaches.

Patients’ and non-professional coaches’ narratives offer a detailed insight into the manifold experiences with the practical implementation of homeCIMT that may help improve implementing the homeCIMT programme and similar approaches involving increased training duration and intensity and/or involvement of family members.

 

In stroke rehabilitation, repetitive, task-specific training is one of the key principles.1,2 For stroke patients with upper limb dysfunction, constraint-induced movement therapy and its modifications are one of the most promising techniques taking this principle into account.14 To induce the use of the affected arm in everyday life,5 constraint-induced movement therapy comprises an intensive motor training, the use of adherence-enhancing behavioural methods and the immobilization of the non-affected hand.5,6 A four-week home-based training in conjunction with the support of a non-professional coach (e.g. family member) and reduced professional assistance to meet ambulatory care conditions (home-based constraint-induced movement therapy (homeCIMT)) is one way to deliver constraint-induced movement therapy to patients in long-term care.7 The HOMECIMT trial showed homeCIMT to be superior to conventional therapies with regard to the self-perceived use of the stroke-affected arm in daily activities.8

HomeCIMT and other forms of constraint-induced movement therapy have been shown to be particularly effective in improving upper limb function post stroke.1,3 However, these interventions will only work if patients adhere to them. Constraint-induced movement therapy requires numerous hours of repetitive exercises, which are likely to present a challenge for patients.9,10 Regarding homeCIMT, the involvement of a non-professional coach might be an additional challenging aspect for both, patients and non-professional coaches. Thus, it is vital to better understand the users’ experiences with different forms of constraint-induced movement therapies in order to adapt the way how we deliver these interventions and maximize adherence to them. However, there are only few investigations with the users’ perspectives on constraint-induced movement therapies. We are only aware of three minor qualitative studies investigating the experiences of two or three patients with modified constraint-induced movement therapies.1113 A qualitative research approach, in particular, provides information about the users’ experiences with the practical application of a therapy.14,15

In addition to the cluster randomized controlled HOMECIMT trial, we conducted a comprehensive qualitative study to explore the users’ perspectives on homeCIMT following the driving question: What are the experiences of chronic stroke patients and non-professional coaches with homeCIMT?[…]

 

Continue —> Stroke patients’ and non-professional coaches’ experiences with home-based constraint-induced movement therapy: a qualitative study – Anne Stark, Christine Färber, Britta Tetzlaff, Martin Scherer, Anne Barzel, 2019

Figure 1. Themes regarding the experiences of patients and non-professional coaches with homeCIMT.

 

, , , , , , , , ,

Leave a comment

[Abstract] Rehabilitation of stroke patients with plegic hands: Randomized controlled trial of expanded Constraint-Induced Movement therapy

via Rehabilitation of stroke patients with plegic hands: Randomized controlled trial of expanded Constraint-Induced Movement therapy – IOS Press

, , , , , , , , , , ,

Leave a comment

[Abstract] Protocol for a Randomized Controlled Trial of CI Therapy for Rehabilitation of Upper Extremity Motor Deficit

Constraint-induced movement therapy (CI therapy) has been shown to reduce disability for individuals with upper extremity (UE) hemiparesis following different neurologic injuries. This article describes the study design and methodological considerations of the Bringing Rehabilitation to American Veterans Everywhere (BRAVE) Project, a randomized controlled trial of CI therapy to improve the motor deficit of participants with chronic and subacute traumatic brain injury. Our CI therapy protocol comprises 4 major components:

  1.  intensive training of the more-affected UE for target of 3 hour/day for 10 consecutive weekdays,
  2.  a behavioral technique termed shaping during training,
  3.  a “transfer package,” 0.5 hour/day, of behavioral techniques to transfer therapeutic gains from the treatment setting to the life situation, and
  4. prolonged restraint of use of the UE not being trained.

The primary endpoint is posttreatment change on the Motor Activity Log, which assesses the use of the more-affected arm outside the laboratory in everyday life situations. Data from a number of secondary outcome measures are also being collected and can be categorized as physical, genomic, biologic, fitness, cognitive/behavioral, quality of life, and neuroimaging measures.

via Protocol for a Randomized Controlled Trial of CI Therapy for… : The Journal of Head Trauma Rehabilitation

, , , , , , , , ,

Leave a comment

[Abstract + References] Project Star Catcher: A Novel Immersive Virtual Reality Experience for Upper Limb Rehabilitation

Abstract

Modern immersive virtual reality experiences have the unique potential to motivate patients undergoing physical therapy for performing intensive repetitive task-based treatment and can be utilized to collect real-time user data to track adherence and compliance rates. This article reports the design and evaluation of an immersive virtual reality game using the HTC Vive for upper limb rehabilitation, titled “Project Star Catcher” (PSC), aimed at users with hemiparesis. The game mechanics were adapted from modified Constraint Induced Therapy (mCIT), an established therapy method where users are asked to use the weaker arm by physically binding the stronger arm. Our adaptation changes the physical to psychological binding by providing various types of immersive stimulation to influence the use of the weaker arm. PSC was evaluated by users with combined developmental and physical impairments as well as stroke survivors. The results suggest that we were successful in providing a motivating experience for performing mCIT as well as a cost-effective solution for real-time data capture during therapy. We conclude the article with a set of considerations for immersive virtual reality therapy game design.

References

1
Gilda Aparecida de Assis, Ana Grasielle Dionísio Corrêa, Maria Bernardete Rodrigues Martins, Wendel Goes Pedrozo, and Roseli de Deus Lopes. 2016. An augmented reality system for upper-limb post-stroke motor rehabilitation: A feasibility study. Disabil. Rehabil. Assist. Technol. 11, 6 (2016), 521–528.
2
Alejandro Baldominos, Yago Saez, and Cristina García del Pozo. 2015. An approach to physical rehabilitation using state-of-the-art virtual reality and motion tracking technologies. Proced. Comput. Sci. 64 (2015), 10–16.
3
Stacy J. Morris Bamberg, Ari Y. Benbasat, Donna Moxley Scarborough, David E. Krebs, and Joseph A. Paradiso. 2008. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12, 4 (2008), 413–423.
4
Rosa María Baños, Cristina Botella, Mariano Alcañiz, Víctor Liaño, Belén Guerrero, and Beatriz Rey. 2004. Immersion and emotion: Their impact on the sense of presence. CyberPsychol. Behav. 7, 6 (2004), 734–741.
5
Corey J. Bohil, Bradly Alicea, and Frank A. Biocca. 2011. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12, 12 (2011), 752–762.
6
Nancy N. Byl, Gary M. Abrams, Erica Pitsch, Irina Fedulow, Hyunchul Kim, Matt Simkins, Srikantan Nagarajan, and Jacob Rosen. 2013. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. J. Hand Ther. 26, 4 (2013), 343–352.
7
Mónica S. Cameirão, S. Bermúdez, and P. F. M. J. Verschure. 2008. Virtual reality based upper extremity rehabilitation following stroke: A review. J. CyberTher. Rehabil. 1, 1 (2008), 63–74.
8
R. Campbell, M. Evans, M. Tucker, B. Quilty, P. Dieppe, and J. L. Donovan. 2001. Why don’t patients do their exercises? Understanding non-compliance with physiotherapy in patients with osteoarthritis of the knee. J. Epidemiol. Commun. Health 55, 2 (2001), 132–138.
9
Stephanie K. Carter and John A. Rizzo. 2007. Use of outpatient physical therapy services by people with musculoskeletal conditions. Phys. Ther. 87, 5 (2007), 497.
10
Derwin K. Chan, Chris Lonsdale, Po Y. Ho, Patrick S. Yung, and Kai M. Chan. 2009. Patient motivation and adherence to postsurgery rehabilitation exercise recommendations: The influence of physiotherapists’ autonomy-supportive behaviors. Arch. Phys. Med. Rehabil. 90, 12 (2009), 1977–1982.
11
Luca Chittaro, Riccardo Sioni, Cristiano Crescentini, and Franco Fabbro. 2017. Mortality salience in virtual reality experiences and its effects on users attitudes towards risk. Int. J. Hum.-Comput. Stud. 101 (2017), 10–22.
12
Davide Corbetta, Federico Imeri, and Roberto Gatti. 2015. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. J. Physiother. 61, 3 (2015), 117–124.
13
GSV Capital Corp. 2013. GSV Capital Corp. The Pioneer Building. Retrieved from http://gsvcap.com/wp/market-commentary/project-runway/.
14
Patrick J. Costello. 1997. Health and Safety Issues Associated with Virtual Reality: A Review of Current Literature. Advisory Group on Computer Graphics.
15
J. H. Crosbie, S. Lennon, J. R. Basford, and S. M. McDonough. 2007. Virtual reality in stroke rehabilitation: Still more virtual than real. Disabil. Rehabil. 29, 14 (2007), 1139–1146.
16
Mónica da Silva Cameirão, Sergi Bermúdez i Badia, Esther Duarte, and Paul F. M. J. Verschure. 2011. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: A randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor. Neurol. Neurosci. 29, 5 (2011), 287–298.
17
Julieta Dascal, Mark Reid, Waguih William IsHak, Brennan Spiegel, Jennifer Recacho, Bradley Rosen, and Itai Danovitch. 2017. Virtual reality and medical inpatients: A systematic review of randomized, controlled trials. Inn. Clin. Neurosci. 14, 1–2 (2017), 14.
18
Judith E. Deutsch, Jeffrey A. Lewis, and Grigore Burdea. 2007. Technical and patient performance using a virtual reality-integrated telerehabilitation system: Preliminary finding. IEEE Trans. Neur. Syst. Rehabil. Eng. 15, 1 (2007), 30–35.
19
Julia Diemer, Georg W. Alpers, Henrik M. Peperkorn, Youssef Shiban, and Andreas Mühlberger. 2015. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 6, Article 26 (2015), 1–9.
20
Sheryl Flynn, Phyllis Palma, and Anneke Bender. 2007. Feasibility of using the sony playstation 2 gaming platform for an individual poststroke: A case report. J. Neurol. Phys. Therapy 31, 4 (2007), 180–189.
21
AMP New Ventures Follow. 2016. Virtual Reality (VR) Continuum—AMP New Ventures. Retrieved from https://www.slideshare.net/ampnewventures/virtual-reality-vr-continuum-amp-new-ventures.
22
Centers for Medicare and Medicaid Services. 2016. U.S. Department of Health and Human Services Centers for Medicare 8 Medicaid Services (CMS). Report to the Congress: Medicare Payment Policy. Technical Report, 2016. Retrieved February 7, 2016 from http://www.medpac.gov/docs/default-source/reports/march-2016-report-to-the-congress-medicare-payment-policy.pdf?sfvrsn=0.
23
Helena Grillon, Françoise Riquier, Bruno Herbelin, and Daniel Thalmann. 2006. Virtual reality as a therapeutic tool in the confines of social anxiety disorder treatment. Int. J. Disabil. Hum. Dev. 5, 3 (2006), 243–250.
24
Diane Gromala, Xin Tong, Amber Choo, Mehdi Karamnejad, and Chris D. Shaw. 2015. The virtual meditative walk: Virtual reality therapy for chronic pain management. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 521–524.
25
Sophie Heins, Stéphanie Dehem, Vincenza Montedoro, Franz Rocca, Pierre-Henri de Deken, Martin Edwards, Bruno Dehez, Matei Mancas, Gaëtan Stoquart, Thierry Lejeune, et al. 2017. Robotic-assisted serious game for motor and cognitive post-stroke rehabilitation. In Proceedings of the 5th IEEE Conference on Serious Games and Applications for Health.
26
Hunter G. Hoffman, Gloria T. Chambers, Walter J. Meyer, Lisa L. Arceneaux, William J. Russell, Eric J. Seibel, Todd L. Richards, Sam R. Sharar, and David R. Patterson. 2011. Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Ann. Behav. Med. 41, 2 (2011), 183–191.
27
Jerome Iruthayarajah, Amanda McIntyre, Andreea Cotoi, Steven Macaluso, and Robert Teasell. 2017. The use of virtual reality for balance among individuals with chronic stroke: A systematic review and meta-analysis. Top. Stroke Rehabil. 24, 1 (2017), 68–79.
28
Kirsten Jack, Sionnadh Mairi McLean, Jennifer Klaber Moffett, and Eric Gardiner. 2010. Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review. Manual Therapy 15, 3 (2010), 220–228.
29
Eun-Kyu Ji and Sang-Heon Lee. 2016. Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: A preliminary study. J. Phys. Ther. Sci. 28, 11 (2016), 3168–3172.
30
Dahlia Kairy, Michel Tousignant, Nancy Leclerc, Anne-Marie Côté, Mélanie Levasseur, et al. 2013. The patients perspective of in-home telerehabilitation physiotherapy services following total knee arthroplasty. Int. J. Environ. Res. Publ. Health 10, 9 (2013), 3998–4011.
31
Michelle R. Kandalaft, Nyaz Didehbani, Daniel C. Krawczyk, Tandra T. Allen, and Sandra B. Chapman. 2013. Virtual reality social cognition training for young adults with high-functioning autism. J. Autism Dev. Disord. 43, 1 (2013), 34–44.
32
Oliver Kreylos. 2016. Lighthouse tracking examined. Retrieved from http://doc-ok.org/?p=1478.
33
Danielle E. Levac, Stephanie M. N. Glegg, Heidi Sveistrup, Heather Colquhoun, Patricia Miller, Hillel Finestone, Vincent DePaul, Jocelyn E. Harris, and Diana Velikonja. 2016. Promoting therapists use of motor learning strategies within virtual reality-based stroke rehabilitation. PloS One 11, 12 (2016), e0168311.
34
Mindy F. Levin, Osnat Snir, Dario G. Liebermann, Harold Weingarden, and Patrice L. Weiss. 2012. Virtual reality versus conventional treatment of reaching ability in chronic stroke: Clinical feasibility study. Neurol. Ther. 1, 1 (2012), 3.
35
Robert W. Lindeman, Yasuyuki Yanagida, Kenichi Hosaka, and Shinji Abe. 2006. The tactapack: A wireless sensor/actuator package for physical therapy applications. In Proceedings of the 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 337–341.
36
Roberto Lloréns, Enrique Noé, Carolina Colomer, and Mariano Alcañiz. 2015. Effectiveness, usability, and cost-benefit of a virtual reality–based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 96, 3 (2015), 418–425.
37
Keith R. Lohse, Courtney G. E. Hilderman, Katharine L. Cheung, Sandy Tatla, and H. F. Machiel Van der Loos. 2014. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS One 9, 3 (2014), e93318.
38
Peter S. Lum, Gitendra Uswatte, Edward Taub, Phillip Hardin, and Victor W. Mark. 2006. A telerehabilitation approach to delivery of constraint-induced movement therapy. J. Rehabil. Res. Dev. 43, 3 (2006), 391.
39
Victor W. Mark and Edward Taub. 2004. Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities. Restor. Neurol. Neurosci. 22, 3–5 (2004), 317–336.
40
Gary Marshall. 2016. Best VR controller: HTC Vive vs Oculus Rift vs PlayStation VR vs Gear VR. Retrieved April 30, 2017 from http://www.techradar.com/news/gaming/best-vr-controller-htc-vive-vs-oculus-rift-vs-.
41
R. R. Mellecker and A. M. McManus. 2014. Active video games and physical activity recommendations: A comparison of the Gamercize Stepper, XBOX Kinect and XaviX J-Mat. J. Sci. Med. Sport 17, 3 (2014), 288–292.
42
Nexhmedin Morina, Hiske Ijntema, Katharina Meyerbröker, and Paul M. G. Emmelkamp. 2015. Can virtual reality exposure therapy gains be generalized to real-life? A meta-analysis of studies applying behavioral assessments. Behav. Res. Ther. 74 (2015), 18–24.
43
Hossein Mousavi Hondori and Maryam Khademi. 2014. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. 2014 (2014).
44
Maria V. Nararro-Haro, Hunter G. Hoffman, Azucena Garcia-Palacios, Mariana Sampaio, Wadee Alhalabi, Karyn Hall, and Marsha Linehan. 2016. The use of virtual reality to facilitate mindfulness skills training in dialectical behavioral therapy for borderline personality disorder: A case study. Front. Psychol. 7, Article 1573 (2016), 1–9.
45
Diederick C. Niehorster, Li Li, and Markus Lappe. 2017. The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception 8, 3 (2017), 2041669517708205.
46
NINDS. 2014. Post-Stroke Rehabilitation. NIH Publication No. 14 1846. Retrieved April 30, 2017 from https://stroke.nih.gov/materials/rehabilitation.html.
47
Stephen J. Page, Peter Levine, Sueann Sisto, Quin Bond, and Mark V. Johnston. 2002. Stroke patients’ and therapists’ opinions of constraint-induced movement therapy. Clin. Rehabil. 16, 1 (2002), 55–60.
48
Marco Pasch, Nadia Berthouze, Betsy Dijk, and Anton Nijholt. 2008. Motivations, strategies, and movement patterns of video gamers playing Nintendo Wii boxing. In Proceedings of the Facial and Bodily Expressions for Control and Adaptation of Games Workshop.
49
Lamberto Piron, Andrea Turolla, Michela Agostini, Carla Zucconi, Feliciana Cortese, Mauro Zampolini, Mara Zannini, Mauro Dam, Laura Ventura, Michela Battauz, et al. 2009. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. J. Rehabil. Med. 41, 12 (2009), 1016–1020.
50
Barbara Olasov Rothbaum, Matthew Price, Tanja Jovanovic, Seth D. Norrholm, Maryrose Gerardi, Boadie Dunlop, Michael Davis, Bekh Bradley, Erica J. Duncan, Albert Rizzo, et al. 2014. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am. J. Psychiat. 171, 6 (2014), 640–648.
51
Anil K. Roy, Yash Soni, and Sonali Dubey. 2013. Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In Proceedings of the 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS’13). IEEE, 298–304.
52
Mar Rus-Calafell, José Gutiérrez-Maldonado, and Joan Ribas-Sabaté. 2014. A virtual reality-integrated program for improving social skills in patients with schizophrenia: A pilot study. J. Behav. Ther. Exp. Psychiat. 45, 1 (2014), 81–89.
53
Yasser Salem, Stacy Jaffee Gropack, Dale Coffin, and Ellen M. Godwin. 2012. Effectiveness of a low-cost virtual reality system for children with developmental delay: A preliminary randomised single-blind controlled trial. Physiotherapy 98, 3 (2012), 189–195.
54
Gustavo Saposnik, Mindy Levin, Stroke Outcome Research Canada (SORCan) Working Group, et al. 2011. Virtual reality in stroke rehabilitation. Stroke 42, 5 (2011), 1380–1386.
55
Gustavo Saposnik, Robert Teasell, Muhammad Mamdani, Judith Hall, William McIlroy, Donna Cheung, Kevin E. Thorpe, Leonardo G. Cohen, Mark Bayley, et al. 2010. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke 41, 7 (2010), 1477–1484.
56
Dante D’Orazio Savov and Vlad. 2015. Valve’s VR headset is called the Vive and it’s made by HTC. Retrieved from https://www.theverge.com/2015/3/1/8127445/htc-vive-valve-vr-headset.
57
Yue X. Shi, Jin H. Tian, Ke H. Yang, and Yue Zhao. 2011. Modified constraint-induced movement therapy versus traditional rehabilitation in patients with upper-extremity dysfunction after stroke: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 92, 6 (2011), 972–982.
58
Youssef Shiban, Iris Schelhorn, Paul Pauli, and Andreas Mühlberger. 2015. Effect of combined multiple contexts and multiple stimuli exposure in spider phobia: A randomized clinical trial in virtual reality. Behav. Res. Ther. 71 (2015), 45–53.
59
Fabian Soffel, Markus Zank, and Andreas Kunz. 2016. Postural stability analysis in virtual reality using the HTC vive. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. ACM, 351–352.
60
Digital Trends Staff. 2017. Oculus Rift vs. HTC Vive. Retrieved from https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/.
61
Sofia Straudi, Giacomo Severini, Amira Sabbagh Charabati, Claudia Pavarelli, Giulia Gamberini, Anna Scotti, and Nino Basaglia. 2017. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: An exploratory study. BMC Neurol. 17, 1 (2017), 86.
62
Daria Tsoupikova, Kristen Triandafilou, Saumya Solanki, Alex Barry, Fabian Preuss, and Derek Kamper. 2016. Real-time diagnostic data in multi-user virtual reality post-stroke therapy. In Proceedings of the SIGGRAPH ASIA 2016 VR Showcase (SA’16). ACM, New York, NY. DOI:https://doi.org/10.1145/2996376.2996387
63
Pan Wang, Gerald Choon Huat Koh, Christian Gilles Boucharenc, Tian Ma Xu, Hamasaki, and Ching Chiuan Yen. 2017. Developing a tangible gaming board for post-stroke upper limb functional training. In Proceedings of the 11th International Conference on Tangible, Embedded, and Embodied Interaction (TEI’17). ACM, New York, NY, 617–624. DOI:https://doi.org/10.1145/3024969.3025080

via Project Star Catcher

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] Constraint Induced Movement Therapy

WHAT IS CIMT?

taub2Constraint-Induced Movement therapy (CIMT/ CIT) or CI therapy is a new therapeutic approach to rehabilitation of hand and arm movement after stroke, cerebral palsy, brachial plexus injury, multiple sclerosis (MS) and traumatic brain injury (TBI). CI therapy consists of a family of treatments that teach the brain to “rewire” itself following a neurological injury. CI therapy is based on research by Prof. Edward Taub and his collaborators at the University of Alabama at Birmingham, USA that showed that patients can learn to improve movement of the weaker part of their bodies.CIMT is a 2-3 week treatment program that includes restraint of the non-affected hand for most of the waking hours and intensive practice of the affected one for specific hours per day. Practice is focused on everyday activities that are important for the patient and takes place in the clinic and at home. The daily home-based program is tailor made to match each person’s

HOW CIMT WORKS

CIMT includes restraint of the non-affected hand and intensive, everyday practice to the affected arm and hand.

CIMT’s functional effects have been observed as early as on the 3rd-4th day of the program. Improvements have been recorded to last for years after termination of therapy; the reason for this is that CIMT eventually increases the spontaneous use of the affected hand. That is directly linked to research studies showing that CIMT is the only rehabilitation technique to markedly change the organization of activity in the brain and remodel brain structures.

EFFECTIVENESS

CIMT is the only rehabilitative technique that is evidence based to substantially improve arm and hand movement in both adults and children in a 2-3 week period. A large, supporting body of research studies is available, some of which are large sampled randomized controlled trials. The most important finding from research studies and clinical observations is that improvements last for months or years after termination of the CIMT program.

CONDITIONS CIMT IS SUITABLE FOR

CIMT is suitable for adults and children that face movement difficulties (mostly) with their one arm and hand. This might have been the result of a central or peripheral neurological damage.

Although CIMT has been primarily designed for hemiplegia (muscle weakness and movement difficulties of the one side of the body), it can also be effective in quadriplegia when the one side of the body is the one that causes the main dysfunction. In general, CIMT is suitable for any case that non-use of the one arm/ hand affects the person’s independency in everyday activities.

To determine whether CIMT might be suitable for you, our therapists will apply a thorough functional evaluation.

The usual conditions that we treat are the following:

Cerebral Palsy

Cerebral palsy (CP) is the result of damage to the premature brain, either during pregnancy, birth or early infant years. CP can lead to muscle weakness, incoordination of movements and affected muscle tone. CP can affect all four limbs (quadriplegia), lower limbs only (diplegia) or one side of the body (hemiplegia). CIMT is suitable for hemiplegic CP and specific quadriplegic cases.

READ MORE

Cerebrovascular Accident (Stroke)

A stroke usually results in movement difficulties in one side of the body (hemiplegia). Early after the incident, movement of the affected hand is clumsy and inefficient leading to unconscious avoidance of this part of the body and use of the healthy hand throughout most everyday activities. This compensation leads to further functional decrements as the muscles lose more of their strength, being underused.

READ MORE

Brachial plexus injury-BPI (Obstetrical Palsy)

The brachial plexus is responsible for sensory and movement innervation of the entire upper limb. Lesions of the brachial plexus can lead to severe functional impairment. Obstetrical Palsy is a special type of BPI that occurs during the birthing process and affects all or part of the infant’s arm and hand.

READ MORE

Multiple Sclerosis (MS)

Multiple Sclerosis is a chronic, auto-immune condition which means that for some unidentified reason the body triggers an inflammatory response affecting the nerves in the brain and/ or spinal cord. This can affect a person’s movements as the brain is unable to effectively transmit the messages to the nerves supplying the muscles. Movements may be slower and uncoordinated leading to functional problems with one or both arms during everyday activities.

READ MORE

Traumatic Brain Injury (TBI)

Traumatic brain injury may occur in the area of the brain responsible for controlling movements in the arm and hand, leading to hemiplegia. It is known that people who have arm and hand weakness are more likely to compensate during functional activities by using their stronger arm. The reason for this is that movement of the weaker arm and hand may be slower or demanding greater effort, thus causing frustration. This condition progressively results in “forgetting” use of the weaker hand and spontaneously using only the healthy hand to accomplish everyday activities. This compensation leads to further functional decrements as the muscles lose more of their strength, being underused.

READ MORE

 

For more visit site —>  Constraint Induced Movement Therapy | Constraint Induced Movement Therapy

, , , , , , , , , ,

Leave a comment

%d bloggers like this: