Archive for category FES

[WEB SITE] SMARTmove – FES

Summary

SMARTmove is a £1.1 million Medical Research Council research project running for 30 months from September 2016 to February 2019, funded under the Development Pathway Funding Scheme (DPFS). The project brings together a multidisciplinary team with expertise in functional materials, direct printing fabrication, control algorithms, wireless electronics, sensors, and end user engagement to address stroke rehabilitation. Working together with the advisory board members from six institutions, we will deliver a personalised wearable device for home-based stroke upper limb rehabilitation.

     

The Need

Stroke is one of the largest causes of disability: 17 million strokes occur every year worldwide, meaning one stroke every two seconds. Half of stroke survivors lose the ability to perform everyday tasks with their upper limb, which affects their independence. The cost to society in the UK is nine billion pounds per year due to health and social care, informal care, productivity loss and benefit payments. As stroke is an age-related disease, these numbers are set to increase as the population ages.

Novelty

Current commercial devices using functional electrical stimulation (FES) have large electrodes that only stimulate a limited number of muscles, resulting in simple, imprecise movements and the rapid onset of fatigue. In addition, current commercial devices do not employ feedback control to account for the movement of patients, only reducing the level of precision in the resulting movements. In addition, devices are either bulky and expensive, or difficult to set-up due to trailing wires.

Our project uses bespoke screen printable pastes to print electrode arrays directly onto everyday fabrics, such as those used in clothing. The resulting garments will have cutting-edge sensor technologies integrated into them. Advanced control algorithms will then adjust the stimulation based on the patients’ limb motion to enable precise functional movements, such as eating, washing or dressing.

Impact

This project will deliver a fabric-based wearable FES for home based stroke rehabilitation. The beneficiaries include:

  1. Persons with stroke (PwS) and other neurological conditions. Stroke survivors are the direct beneficiaries of our research. The FES clothing can be adapted to also treat hand/arm disabilities resulting from other neurological conditions such as cerebral palsy, head injury, spinal cord injury, and multiple sclerosis. The use of the wearable training system increases the intensity of rehabilitation without an increase in clinical contact time. This leads to better outcomes such as reduced impairment, greater restoration of function, improved quality of life and increased social activity.
  2. The NHS. FES-integrated clothing is comfortable to wear and convenient to use for rehabilitation, enabling impaired people to benefit from FES at home. It will transfer hospital based professional care to home based self-care, and therefore will reduce NHS costs by saving healthcare professionals’ time and other hospital resources.
  3. Industry. Benefits include: bringing business to the whole supply chain; increasing the FES market demand by improving performance; benefiting other industry sectors such as rehabilitation for other neurological conditions.
  4. Research communities in related fields. Specifically, the fields of novel fabrication, control systems, design of medical devices, rehabilitation, smart fabrics, and remote healthcare will benefit from the highly transformative platform technology (e.g. direct write printing, fabric electrodes, iterative learning control systems) developed in this work.

What is FES?

Functional electrical stimulation (FES) is a technique used to facilitate the practice of therapeutic exercises and tasks. Intensive movement practice can restore the upper limb function lost following stroke. However, stroke patients often have little or no movement, so are unable to practice. FES activates muscles artificially to facilitate task practise and improve patients’ movement.

More…..

Source: SMARTmove

Advertisements

, , , , , , ,

Leave a comment

[ARTICLE] Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study – Full Text

Abstract

Background

Brain injury survivors often present upper-limb motor impairment affecting the execution of functional activities such as reaching. A currently active research line seeking to maximize upper-limb motor recovery after a brain injury, deals with the combined use of functional electrical stimulation (FES) and mechanical supporting devices, in what has been previously termed hybrid robotic systems. This study evaluates from the technical and clinical perspectives the usability of an integrated hybrid robotic system for the rehabilitation of upper-limb reaching movements after a brain lesion affecting the motor function.

Methods

The presented system is comprised of four main components. The hybrid assistance is given by a passive exoskeleton to support the arm weight against gravity and a functional electrical stimulation device to assist the execution of the reaching task. The feedback error learning (FEL) controller was implemented to adjust the intensity of the electrical stimuli delivered on target muscles according to the performance of the users. This control strategy is based on a proportional-integral-derivative feedback controller and an artificial neural network as the feedforward controller. Two experiments were carried out in this evaluation. First, the technical viability and the performance of the implemented FEL controller was evaluated in healthy subjects (N = 12). Second, a small cohort of patients with a brain injury (N = 4) participated in two experimental session to evaluate the system performance. Also, the overall satisfaction and emotional response of the users after they used the system was assessed.

Results

In the experiment with healthy subjects, a significant reduction of the tracking error was found during the execution of reaching movements. In the experiment with patients, a decreasing trend of the error trajectory was found together with an increasing trend in the task performance as the movement was repeated. Brain injury patients expressed a great acceptance in using the system as a rehabilitation tool.

Conclusions

The study demonstrates the technical feasibility of using the hybrid robotic system for reaching rehabilitation. Patients’ reports on the received intervention reveal a great satisfaction and acceptance of the hybrid robotic system.

Background

Upper limb hemiparesis is one of the most common consequences after a brain injury accident [1]. This motor impairment has an adverse impact on the quality of life of survivors since it hinders the execution of activities of daily living. From the rehabilitation perspective, it is widely accepted that high-intensity and repetitive task-specific practice is the most effective principle to promote motor recovery after a brain injury [12]. However, traditional rehabilitation treatment offers a dose of movement repetition that is in most cases insufficient to facilitate neural reorganization [3]. In response to these current clinical shortcomings, there is a clear interest in alternative rehabilitation methods that improve the arm motor functionality of brain injury survivors.

Hybrid robotic systems for motor rehabilitation are a promising approach that combine the advantages of robotic support or assistive devices and functional electrical stimulation (FES) technologies to overcome their individual limitations and to offer more robust rehabilitation interventions [4]. Despite the potential benefits of using hybrid robotic systems for arm rehabilitation, a recent published review shows that only a few hybrid systems presented in the literature were tested with stroke patients [4]. Possible reasons could be the difficulties arising from the integration of both assistive technologies or the lack of integrated platforms that can be easily setup and used.

End-effector robotic devices combined with FES represent the most typical hybrid systems used to train reaching tasks under constrained conditions [567]. With these systems, patients’ forearms are typically restricted to the horizontal plane to isolate the training of the elbow extension movement. The main advantage of this approach is the simplicity of the setup, with only 1 Degree of Freedom (DoF). However, to maximize the treatment’s outcomes and achieve functional improvement it is necessary to train actions with higher range of motion (> 1 DoF) and functional connotations [89]. Yet, the complexity for driving a successful movement execution in such scenarios requires the implementation of a robust and reliable FES controller.

The appropriate design and implementation of FES controllers play a key role to achieve stable and robust motion control in hybrid robotic systems. The control strategy must be able to drive all the necessary joints to realize the desired movement, and compensate any disturbances to the motion, i.e. muscle fatigue onset as well as the strong nonlinear and time-varying response of the musculoskeletal system to FES [1011]. Consequently, open-loop and simple feedback controllers (e.g. proportional-integral-derivative -PID-) are not robust enough to cope with these disturbances [812]. Meadmore et al. presented a more suitable hybrid robotic system for functional rehabilitation scenarios [13]. They implemented a model-based iterative learning controller (ILC) that adjusts the FES intensity based on the tracking error of the previously executed movement (see [1314] for a detail description of the system). This iterative adjustment allows compensating for disturbances caused by FES. Although this approach addresses some of the issues regarding motion control with FES, it requires a detailed mathematical description of the musculoskeletal system to work properly. In this context, unmodeled dynamics and the linearization of the model can reduce the robustness of the controller performance. Also, the identification of the model’s parameters is complex and time consuming, which limits its applicability in clinical settings [1112].

The Feedback Error Learning (FEL) scheme proposed by Kawato [15] can be considered as an alternative to ILC. This scheme was developed to describe how the central nervous system acquires an internal model of the body to improve the motor control. Under this scheme, the motor control command of a feedback controller is used to train a feedforward controller to learn implicitly the inverse dynamics of the controlled system on-line (i.e. the arm). Complementary, this on-line learning procedure also allows the controller to adapt and compensate for disturbances. In contrast with the ILC, the main advantage of this strategy is that the controller does not require an explicit model of the controlled system to work correctly and that it can directly learn the non-linear characteristic of the controlled system. Therefore, using the FEL control strategy to control a hybrid robotic system can simplify the setup of the system considerably, which makes easier to deploy it in clinical settings as well as personalize its response according to each patient’s musculoskeletal characteristics and movement capabilities. The FEL has been used previously to control the wrist [16] and the lower limb [17] motion with FES in healthy subjects; but it has not been tested on brain injury patients. In a previous pilot study, we partially showed the suitability of the FEL scheme in hybrid robotic systems for reaching rehabilitation with healthy subjects [18]. However, a rigorous and robust analysis has not been presented neither this concept has not been tested with motor impaired patients.

The main objective of this study is to verify the usability of a fully integrated hybrid robotic system based on an FEL scheme for rehabilitation of reaching movement in brain injury patients. To attain such objective two-step experimentation was followed. The first part consists of demonstrating the technical viability and learning capability of the developed FEL controller to drive the execution of a coordinated shoulder-elbow joint movement. The second part consists of testing the usability of the platform with brain injury patients in a more realistic rehabilitation scenario. For this purpose, we assessed the patients’ performance and overall satisfaction and emotional response after using the system.

Methods

In this section, we present the hybrid robotic system for the rehabilitation of reaching movement in patients with a brain injury. The system focuses on aiding users to move their paretic arm towards specific distal directions in the space. During the execution of the reaching task, the FEL controller adjusts the intensities of the electrical stimuli delivered to target muscles in order to aid the subjects in tracking accurately the target paths.

Description of the hybrid rehabilitation platform for reaching rehabilitation

Figure 1 shows the general overview of the developed platform. This rehabilitation platform is composed of four main components: the hybrid assistive device (upper limb exoskeleton + FES device); the high-level controller (HLC); the visual feedback and; the user interface. […]

Fig. 1 a General overview of the presented hybrid robotic platform for reaching rehabilitation. bVisual feedback provided to the users. The green ball represents the actual arm position, the blue cross is the reference trajectory, the initial and final position are represented by the gray ball and red square respectively. c Interface for system configuration

Source: Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , ,

Leave a comment

[VIDEO] Bioness L300 Go Technology Introduction – YouTube

Published on Sep 25, 2017
L300 Go is a functional electrical stimulation (FES) system that satisfies the productivity demands of today’s value-based healthcare system. Key aspects of the L300 experience have been dramatically improved with 3D Motion Detection, multi-channel stimulation, Smart Bluetooth® programming and a home user mobile app that tracks activity to keep patients engaged in the rehabilitation process. All of this in a streamlined design, with a fitting process that is faster and easier than ever before.

, , , , ,

Leave a comment

[WEB SITE] Bioness Begins Shipping L300 Go Systems for Foot Drop 

Published on August 30, 2017

Bioness announces it has begun shipping the L300 Go Systems, cleared by the FDA in early 2017 and available in four configurations for use in patients with foot drop and/or muscle weakness related to upper motor neuron disease/injury.

The L300 Go System succeeds the NESS L300 Foot Drop System and NESS L300 Plus System, and includes numerous advancements designed to optimize therapy sessions and promote functional gains at home.

Among these is comprehensive 3D motion detection of gait events, via a learning algorithm that analyzes patient movement and offers electrical stimulation precisely when needed during the gait cycle.

Additional features, according to a media release from Valencia, Calif-based Bioness, include adaptive motion detection and onboard controls that eliminate dependence on foot sensors or remote controls; multi-channel stimulation, which enables clinicians to adjust dorsiflexion and inversion/eversion with a novel new electrode options; and myBioness, a new mobile iOS application designed to empower home users to extend rehabilitative gains through setting goals and tracking recovery progress.

“Today’s value-based healthcare model demands that rehabilitative professionals keep patients motivated through superior, more personalized care,” says Todd Cushman, president and CEO of Bioness, in the release. “With the introduction of the L300 Go, clinicians now have access to technological innovations that keep patients engaged during the recovery process while improving mobility in the clinic and community.”

Current users of the L300 Foot Drop System and the L300 Plus System will be eligible for a Customer Loyalty Upgrade Program, which is designed to make the L300 Go more accessible for users in the clinic and community.

[Source(s): Bioness, PR Newswire]

Source: Bioness Begins Shipping L300 Go Systems for Foot Drop – Rehab Managment

, , , ,

Leave a comment

[WEB SITE] Bioness Announces Commercial Availability of the L300 Go™ System to Healthcare Professionals

Source: Bioness Announces Commercial Availability of the L300 Go™ System to Healthcare Professionals

, , , , , ,

Leave a comment

[Review] Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation – PDF

Abstract

Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.

Download Full Text PDF

, , , ,

Leave a comment

[Abstract] Design and Test of a Closed-Loop FES System for Supporting Function of the Hemiparetic Hand Based on Automatic Detection Using the Microsoft Kinect Sensor

Abstract
This paper describes the design of a FES system automatically controlled in a closed loop using a Microsoft Kinect sensor, for assisting both cylindrical grasping and hand opening. The feasibility of the system was evaluated in real-time in stroke patients with hand function deficits. A hand function exercise was designed in which the subjects performed an arm and hand exercise in sitting position. The subject had to grasp one of two differently sized cylindrical objects and move it forward or backwards in the sagittal plane. This exercise was performed with each cylinder with and without FES support. Results showed that the stroke patients were able to perform up to 29% more successful grasps when they were assisted by FES. Moreover, the hand grasp-and-hold and hold-and-release durations were shorter for the smaller of the two cylinders. FES was appropriately timed in more than 95% of all trials indicating successful closed loop FES control. Future studies should incorporate options for assisting forward reaching in order to target a larger group of stroke patients.

, , , , , , , , , ,

Leave a comment

[Abstract] Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation

Abstract:

Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.

Source: Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation – IEEE Xplore Document

, , , , , , , , , ,

Leave a comment

[VIDEO] WalkAide® Demonstration – YouTube

Published on Mar 29, 2012

WalkAide® patient Connie Fowble demonstrates how the Walkaide® benefits her daily life. She shows the previous orthotic device that she used prior to being fit with the Walkaide®. For more information call 877-4HANGER or visit http://www.hanger.com.

, , , ,

Leave a comment

[Technology News] Global Functional Electrical Stimulation Device (FES) Market 2017 – Bioness INC, Otto Bock, Odstock Medical Limited 

Functional Electrical Stimulation Device (FES) market studies the competitive landscape view of the industry. The Functional Electrical Stimulation Device (FES) report also includes development plans and policies along with manufacturing processes. The major regions involved in Functional Electrical Stimulation Device (FES) Market are (United States, EU, China, and Japan).

For Sample Copy Of The Report Click Here: http://qyresearch.us/report/global-functional-electrical-stimulation-device-fes-market-2017/41817/#inquiry

Leading Manufacturers Analysis in Global Functional Electrical Stimulation Device (FES) Market 2017:

1 Bioness INC
2 Otto Bock
3 Odstock Medical Limited
4 Trulife
5 XFT
6 MotoMed

Functional Electrical Stimulation Device (FES) Market: Type Segment Analysis

Wire
Wireless

Functional Electrical Stimulation Device (FES) Market: Applications Segment Analysis

Personal FES
Commercial FES

The Functional Electrical Stimulation Device (FES) report does the thorough study of the key industry players to understand their business strategies, annual revenue, company profile and their contribution to the global Functional Electrical Stimulation Device (FES) market share. Diverse factors of the Functional Electrical Stimulation Device (FES) industry like the supply chain scenario, industry standards, import/export details are also mentioned in Global Functional Electrical Stimulation Device (FES) Market 2017 report.

Key Highlights of the Functional Electrical Stimulation Device (FES) Market:

A Clear understanding of the Functional Electrical Stimulation Device (FES) market based on growth, constraints, opportunities, feasibility study.

Concise Functional Electrical Stimulation Device (FES) Market study based on major geographical regions.

Analysis of evolving market segments as well as a complete study of existing Functional Electrical Stimulation Device (FES) market segments.

Discover More About Report Here: http://qyresearch.us/report/global-functional-electrical-stimulation-device-fes-market-2017/41817/

Furthermore, distinct aspects of Functional Electrical Stimulation Device (FES) market like the technological development, economic factors, opportunities and threats to the growth of Functional Electrical Stimulation Device (FES) market are covered in depth in this report. The performance of Functional Electrical Stimulation Device (FES) market during 2017 to 2022 is being forecasted in this report.

In conclusion, Global Functional Electrical Stimulation Device (FES) market 2017 report presents the descriptive analysis of the parent market based on elite players, present, past and futuristic data which will serve as a profitable guide for all the Functional Electrical Stimulation Device (FES) industry competitors.

Source: Global Functional Electrical Stimulation Device (FES) Market 2017 – Bioness INC, Otto Bock, Odstock Medical Limited | The First Newshawk

, ,

Leave a comment

%d bloggers like this: